

Traffic Impact Assessment

Clifton Yamba Land Pty Ltd

5 September 2023

Gold Coast

Suite 26, 58 Riverwalk Avenue Robina QLD 4226 P: (07) 5562 5377 Brisbane

Level 2, 428 Upper Edward Street Spring Hill QLD 4000 P: (07) 3831 4442 Studio 203, 3 Gladstone Street Newtown NSW 2042 P: (02) 9557 6202

W: www.bitziosconsulting.com.au

E: admin@bitziosconsulting.com.au

Copyright in the information and data in this document is the property of Bitzios Consulting. This document and its information and data is for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or in part for any purpose other than for which it was supplied by Bitzios Consulting. Bitzios Consulting makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or its information and data.

Document Issue History

Report File Name	Prepared	Reviewed	Issued	Date	Issued to
P5271.001R 120 Carrs Drive Yamba TIA - DRAFT	R. Tuputala / A. Payne	B. James	A. Payne	14/06/2022	Andrew Smith andrew@md-engineer.com.au
P5271.001R 120 Carrs Drive Yamba TIA	R. Tuputala / A. Payne	B. James	A. Payne	20/07/2022	Andrew Smith andrew@md-engineer.com.au
P5271.002R 120 Carrs Drive Yamba TIA	R. Tuputala / A. Payne	B. James	A. Payne	16/09/2022	Andrew Smith andrew@md-engineer.com.au
P5271.003R 120 Carrs Drive Yamba TIA	A. Fusi	A. Payne	A. Payne	05/09/2023	Andrew Smith andrew@md-engineer.com.au

CONTENTS

		Page
INFO	RMATION REQUEST RESPONSE	1
1.		3
1.1	Background	3
1.2	Proposed Development	3
1.3	Scope	3
2.	EXISTING CONDITIONS	4
2.1	Subject Site Zoning & Planning Context	4
2.2	Road Network	5
2.3	Public Transport	6
2.4	Active Transport	6
3.	TRAFFIC ASSESSMENT	7
3.1	Background Traffic	7
3.1.1	Traffic Surveys	7
3.1.2	Background Traffic Growth	7
3.1.3	WYURA Traffic Growth	7
3.2	Design Traffic	8
3.2.1	Development Traffic Generation	8
3.2.2	Development Trip Directionality	9
3.2.3	Design Traffic	9
3.2.4	Seasonality	9
3.3	SIDRA Assessment	10
3.3.1	Methodology	10
3.3.2	Yamba Road / Treelands Drive	10
3.3.3	Yamba Road / Carrs Drive	11
3.3.4	Yamba Road / Shores Drive	12
3.3.5	Carrs Drive / Miles Street	13
3.3.6	SIDRA Results Summary	14
3.4	Daily Traffic Analysis	15
4.	PARKING & LAYOUT ASSESSMENT	16
4.1	Car Parking Provision	16
4.2	Bicycle Parking Provision	16
4.3	Internal Geometric Layout	16
5.	SERVICING ASSESSMENT	17
5.1	Refuse Collection	17
5.2	Servicing	17
6.	ACCESS ASSESSMENT	18
6.1	Vehicular Access	18
6.2	Sight Distance	18
7.	SUMMARY AND CONCLUSIONS	20

Tables

- Table 2.1: Surrounding Road Network
- Table 2.2: Key Intersections
- Table 3.1: WYURA Background Traffic Generation
- Table 3.2: Proposed Development Traffic Generation
- Table 3.3: Development Distribution
- Table 3.4: Yamba Road / Treelands Drive SIDRA Results Summary
- Table 3.5: Yamba Road / Carrs Drive SIDRA Results Summary
- Table 3.6: Yamba Road / Shores Drive SIDRA Results Summary
- Table 3.7: Carrs Drive / Miles Street SIDRA Results Summary
- Table 4.1: Car Parking Requirement and Provision
- Table 4.2: Internal Geometric Layout Assessment
- Table 6.1: Vehicular Access
- Table 6.2: Sight Distance Review

Figures

- Figure 1.1: Subject Site Location
- Figure 2.1: West Yamba Urban Release Area
- Figure 2.2: Recognised Development Applications
- Figure 3.1: Seasonal Traffic Volumes
- Figure 3.2: Yamba Road / Treelands Drive SIDRA Intersection Layout
- Figure 3.3: Yamba Road / Carrs Drive SIDRA Intersection Layout
- Figure 3.4: Yamba Road / Shores Drive SIDRA Intersection Layout
- Figure 3.5: Carrs Drive / Miles Street SIDRA Intersection Layout
- Figure 6.1: Available Sight Distance
- Figure 6.2: Aerial Sight Distance Review

Appendices

- Appendix A: Development Plans
- Appendix B: Traffic Survey Data
- Appendix C: Network Diagrams
- Appendix D: SIDRA Outputs
- Appendix E: Swept Path Assessment

INFORMATION REQUEST RESPONSE

This response has been prepared in response to the Information Request (IR) issues by Clarence Valley Council (Council) in relation to the proposed manufactured home estate development located at 120 Carrs Drive, Yamba.

Specifically, the below provides a response summary to Items 13-18 of Council's IR with the following traffic report updated to reflect required responses.

Item 13

The 2015 and 2018 traffic data used in the TIA is not current. More recent traffic data shall be provided, noting that an adjoining development's TIA prepared by the same consultant is based on 2022 data.

Response:

Updated 2022 traffic survey data has been sourced from the applicant of the adjacent development with SIDRA Intersection assessments revised accordingly. As shown in Section 3 of the updated report below, with updated count data, peak hour development traffic is not expected to result in adverse impacts to the surrounding road network.

Item 14

Seasonal traffic impacts shall be assessed for peak holiday periods.

Response:

The traffic assessment has been revised to include sensitivity test SIDRA's with an 11% seasonality factor applied. As shown in Section 3 of the revised report below, peak hour development traffic is not expected to result in adverse impacts to the surrounding road network during the peak summer season.

Item 15

The site access to Carrs Drive shall be assessed to identify any upgrade requirements.

Response:

The proposed development abuts the southern boundary of the West Yamba Urban Release Area and as such, notable redevelopment south of the site access is not permissible based on current planning. With only a small number of existing residential dwellings (<10 dwellings) present south of the site access, through traffic volumes past the site access are negligible. As there is no notable opposing traffic movements, turn treatments at the proposed site access are not deemed warranted.

Item 16

The TIA shall be updated to include background + development traffic for Carrs Drive in terms of AADT.

Response:

As detailed in Section 3.4, the proposed development is forecast to generate in the order of 454 daily vehicle trips. The forecast daily traffic generation of the subject site, combined with the few existing dwelling to the south, will not exceed the daily capacity of the local road type (2,000vpd). The existing road width of 7m is also consistent with minimum width requirements for a local road cross-section and therefore the existing form of Carrs Drive is considered suitable to cater for expected daily traffic generation of the proposed development.

Item 17

The assumed development traffic distribution (Table 3.3 of the submitted TIA) indicates a peak PM traffic rate of 70 vehicles per hour. Further detail is required on the gated access to the site to demonstrate that the peak traffic into the development will not lead to queuing on Carrs Drive.

Response:

A typo was identified in Table 3.3 with the report below revised to show the correct PM peak arrival rate of 61 vehicles per hour. To determine expected queuing at the gate, a queuing assessment was undertaken in accordance with the Austroads Guide to Traffic Management Part 2 as follows:

- Arrival rate: 61 veh/hr
- Conservatively assumed service time: 10 seconds
- Average service rate: 300 veh/hr
- Utilisation factor: 0.169 (16.9%)
- Probability of 2 or less vehicles queued: 97.14%
- Probability of 3 or less vehicles queued: 99.5%

As shown above, 95th percentile vehicle queues in the PM peak hour is less than two vehicles. It is noted that this queuing assessment is highly conservative as it is expected that residents will remotely trigger the entry gate before stopping their vehicle and as such are not typically expected to be required to 10 seconds to entre.

Sufficient queue length is proposed to cater for two vehicles wholly within the subject site and three vehicles without queuing impacts onto Carrs Drive. As the proposed storage length can cater for 95th percentile vehicle queues (adopting a conservative service rate), peak hour traffic is not expected to result in queuing onto Carrs Drive.

Item 18

Through connection to Golding Street intersection shall be assessed for the fully developed West Yamba Urban Release Area (WYURA) scenario.

Response:

Assessment of the future Golding Street connection and the fully developed WYURA scenario is not warranted as a part of this development application noting the following:

- As shown in Section 3 of the revised report below, development traffic in combination with currently approved WYURA developments, is not expected to result in adverse impacts to the existing road network. As such, no external works are warranted as a result of the proposed development and there is subsequently no need to assess the provisions of the Golding Street connection
- Detailed information of road network design and all development yields proposed for adjacent development sites are not publicly available information at this stage. As such, an accurate assessment of full WYURA traffic impacts would not be possible as a part of this application
- The future connection to Golding Street via Miles Street will impact land owned by the adjacent developers / landowners and is therefore subject to the relevant applications / assessments for these sites. It is not considered appropriate to assess future links that will be constructed by others as a part of this development application
- It is understood that traffic assessment and determination of trigger points for the Golding Street connection have already been conducted as a part of development application works for other, larger WYURA locations. Any response to Item 18 as a part of this application would therefore simply be a repeat of assessments already known to Council.

1. INTRODUCTION

1.1 Background

Bitzios Consulting (Bitzios) has been engaged by Clifton Yamba Pty Ltd (Client) to prepare a Traffic Impact Assessment (TIA) for a proposed 216-Lot manufactured home estate located at 120 Carrs Drive, Yamba formally described as Lot 2 on DP1279485.

The location of the subject site is illustrated in Figure 1.1.

Source: Nearmap (edited by Bitzios)

Figure 1.1: Subject Site Location

1.2 Proposed Development

The proposal is for a housing estate comprised of:

- 216-Lot manufactured home estate
- Vehicular access via Carrs Drive.

The development plans are provided at Appendix A.

1.3 Scope

The scope of this assessment included:

- Reviewing the existing conditions of the site and its surrounds relevant to traffic and transport
- Estimating the proposed development's traffic generation and distribution on the surrounding road network
- Detailed assessment of the development's traffic impacts on the surrounding road network
- Review the on-site road layout against Council's DCP and the Local Government (Manufactured Home Estates, Caravan Parks, Camping Grounds and Moveable Dwellings) Regulation 2021
- Review the proposed access arrangements against Council's requirements and AS2890
- Review the servicing / refuse collection arrangements Council's requirements and AS2890.

2. EXISTING CONDITIONS

2.1 Subject Site Zoning & Planning Context

The subject site is located on General Residential (R1) zoned land within the West Yamba Urban Release Area (WYURA). WYURA zoning and high-level road planning is shown in Figure 2.1.

SOURCE: Clarence Valley Council Development Control Plan

Figure 2.1: West Yamba Urban Release Area

As shown, the proposed development is consistent with planned uses for the WYURA. A future road connection via Miles Street and Golding Street is also proposed.

Key upgrades to Yamba Road have recently been completed with roundabouts constructed at the following intersections:

- Yamba Road / Treelands Drive
- Yamba Road / Carrs Drive
- Yamba Road / Shores Drive

These roundabout upgrades were implemented to both ameliorate existing issues at these intersections as well as cater for future growth within the area, including development within the WYURA.

As shown above, the area around the subject site is earmarked for significant development. Individual development applications recognised by Council are shown in Figure 2.2.

SOURCE: Nearmap (edited by Bitzios)

Figure 2.2: Recognised Development Applications

2.2 Road Network

Details of the road network surrounding the subject site are outlined in Table 2.1.

Table 2.1: Surrounding Road Network

Road Name	Jurisdiction	No. of Lanes	Hierarchy	Divided	Posted Speed
Carrs Drive	Council	2	Large Lot Residential Road	No	60km/h
Yamba Road	Council	2	Sub-Arterial	No	50km/h

The surrounding key intersections are shown in Table 2.2.

Table 2.2: Key Intersections

Intersection	Jurisdiction	Туре
Yamba Road / Treelands Drive	Council	Roundabout
Yamba Road / Orion Drive	Council	Roundabout
Yamba Road / Shores Drive	Council	Roundabout

2.3 Public Transport

Limited public transport accessibility is available to the current site with the closest bus stops located on Yamba Road approximately 2km from the subject site. This low level of public transport connectivity is consistent with developments of a similar nature in this location.

Furthermore, with future development of the WYURA, Miles Street and the northern portion of Carrs Drive will be upgraded to a collector road standard allowing for the facilitation of a future bus route servicing the WYURA as required.

2.4 Active Transport

The portion of Carrs Drive fronting the subject site is currently consistent with a Large Lot Residential Access Road cross-section with no dedicated active transport facilities present. However, with development of the WYURA it is expected that Carrs Drive and Miles Street will be upgraded to be consistent with urban residential road cross-sections (including footpaths) provided as specified in the *Northern Rivers Local Government Development Design and Construction Manual.*

3. TRAFFIC ASSESSMENT

3.1 Background Traffic

3.1.1 Traffic Surveys

Intersection traffic surveys were undertaken on Wednesday 20 July 2022 at the following intersections:

- Yamba Road / Treelands Drive
- Yamba Road / Carrs Drive
- Yamba Road / Shores Drive

Based on the survey data collected, the following network peak hours were determined:

- AM peak hour: 8:00am 9:00am
- PM peak hour: 3:15pm 4:15pm

Detailed traffic survey data is provided at Appendix B.

3.1.2 Background Traffic Growth

A compounding growth rate of 1.5% per annum was applied to surveyed traffic volumes to forecast future year traffic. This growth rate is consistent with other residential development application assessments in the region and is considered conservative as:

- This growth rate excludes traffic generated by developments within the WYURA which will be added separately, as detailed further later in this document
- This exceeds the historical population growth of 0.8% p.a. in the Yamba area as specified by *profile.id*.

Surveyed peak hour traffic volumes with the above growth rate applied for the year of opening are provided at **Appendix C** (Sheet 1).

3.1.3 WYURA Traffic Growth

To consider traffic impacts associated with known approved developments within the WYURA, forecast traffic generation for recognised development applications in the area were also added to background traffic volumes. The Transport for NSW (formerly Roads and Maritime Services) *Guide to Traffic Generating Developments: Technical Direction* (2013) was used to source trip generation rates for these future developments. Table 3.1 details trip generation rates and the expected increase in traffic generation associated with the proposed developments.

Land Use	Quantity	Traffic Gene	eration Rate	Peak Trips		
Land Use	Quantity	АМ	РМ	AM	РМ	
Low-Density Residential	161 Lots	0.71 trips / lot	0.78 trips / lot	115	126	
Low-Density Residential	465 Lots ¹	0.71 trips / lot	0.78 trips / lot	166	182	
Seniors Living (MHE)	200 lots	0.4 trij	os / lot	80	80	
Seniors Living	52 lots	0.4 trij	os / lot	21	21	
		Net	Existing Trips	366	430	

Table 3.1: WYURA Background Traffic Generation

¹50% of development trips via Carrs Drive

Assumptions relating to the above neighbouring traffic generation are as follows:

- It is not expected that the above developments will be constructed by 2024 however for the purposes of this assessment all trips have been conservatively included
- With future development of the WYURA, Miles Street will be upgraded to a Collector Street standard connecting to Golding Street. As such, 50% of the development accessed off Miles Street (465 Lots) are estimated to use the Golding Street connection instead of Carrs Drive
- Traffic volumes to / from all other future developments considered are conservatively assumed to be via Carrs Drive.

As shown, other planned WYURA developments are estimated to result in an increase of 366 vehicle trips in the AM peak hour and 430 vehicle trips in the PM peak hour.

Distribution of WYURA development trips on the wider network was determined based on the proportional turn volumes surveyed at each intersection and is detailed at **Appendix C** (Sheet 2). Applying this distribution, a network diagram illustrating the WYURA peak hour traffic generation is provided at **Appendix C** (Sheet 3).

Background traffic volumes are therefore the sum of surveyed traffic volumes with growth rates applied plus WYURA development trips. Year of opening (2024) and 10-year design horizon (2034) background volumes, as shown at **Appendix C** (Sheet 4 & 5).

3.2 Design Traffic

3.2.1 Development Traffic Generation

The Transport for NSW (formerly Roads and Maritime Services) *Guide to Traffic Generating Developments: Technical Direction* (2013) Guide was used to source trip generation rates for the existing and proposed development. Consistent with the adjacent, approved 200-Lot manufactured home estate, a 'Seniors Living' traffic generation rate was adopted. This rate is considered to provide a more accurate representation for a development of this type than typical housing rates.

Table 3.2 details the above trip generation rates and the net increase in traffic generation associated with the proposed development.

Table 3.2:	Proposed Development Traffic Generation
------------	---

Land Use	Quantity	Traffic Gene	eration Rate	Peak Trips		
	Quantity	АМ	РМ	АМ	РМ	
Seniors Living	216 lots	0.4 trips / Lot	0.4 trips / Lot	87	87	

As shown, the proposed development is expected to generate in the order of 87 peak hour trips in the AM and PM peak hours. Under uniform flow, this increase in traffic equates to 1.5 additional trips every minute in the AM and PM peak hour. Distribution of these trips across the network is detailed at **Appendix C** (Sheet 6).

3.2.2 Development Trip Directionality

A typical residential 'IN:OUT' split was adopted for the expected directionality of forecast traffic to / from the proposed development on the surrounding road network. The 'IN:OUT' trip distribution is summarised in Table 3.3.

Table 3.3: Development Distribution	n
-------------------------------------	---

Land Use	AM Trip Split		PM Tips Split		AM Trips (veh/h)		PM Trips (veh/h)	
	IN	OUT	IN	OUT	IN	OUT	IN	OUT
Residential	20%	80%	70%	30%	17	70	61	26

3.2.3 Design Traffic

Peak hour design traffic volumes (background plus development trips) are subsequently detailed at **Appendix C** (Sheet 7 & 8) for the expected year of opening (2024) and 10-year design horizon (2034).

3.2.4 Seasonality

It is acknowledged that coastal areas in northern New South Wales are subject to increased traffic demands during holiday periods, especially the summer peaks. To determine the seasonal traffic impacts on traffic volumes, data was sourced from the TfNSW traffic counter site located on the Pacific Highway at the Clarence River bridge (station HWDSTC). This site provided year-round traffic data in 2018 with average daily traffic volumes by month illustrated in Figure 3.1.

Figure 3.1: Seasonal Traffic Volumes

As expected, peak traffic volumes occur in the months of December and January coinciding with summer holiday periods. Smaller increase in average daily traffic volumes were also observed in April and July corresponding with Easter and school holiday periods.

Traffic surveys were undertaken in July after the school holiday period. As such, and based on the above, seasonal peak traffic volumes in January are expected to be approximately 11% higher than surveyed. An 11% increase was therefore applied to forecast background volumes to determine expected seasonal peak volumes. Background and design volumes, with the seasonality factor applied, are provided at **Appendix C** (Sheet 9 – Sheet 12) for the expected year of opening (2024) and 10-year design horizon (2034).

3.3 SIDRA Assessment

3.3.1 Methodology

The key intersections outlined in Section 2.1 were assessed using SIDRA Intersection 9 to determine the impact of development trips on the surrounding road network. The key intersections assessed are as follows:

- Yamba Road / Treelands Drive (Roundabout)
- Yamba Road / Carrs Drive (Roundabout)
- Yamba Road / Shores Drive (Roundabout)
- Yamba Road / Miles Street (Priority-Controlled)

The assessment was undertaken for the weekday AM and PM peak hours. Detailed SIDRA outputs for with and without development scenarios at the expected year of opening (2024) and 10-year design horizon (2034) are provided at **Appendix D**.

3.3.2 Yamba Road / Treelands Drive

The Yamba Road / Treelands Drive intersection layout as assessed in SIDRA is shown in Figure 3.2.

Table 3.4 summarises the SIDRA results for the Yamba Road / Treelands Drive intersection for AM and PM peak hours.

		Backg	round		Design						
Year	DOS (v/c)	Delay (sec)	LOS	Queue (m)	DOS (v/c)	Delay (sec)	LOS	Queue (m)			
Survey Peak Period (July)											
2024 AM	0.48	7	А	29	0.50	7	А	30			
2024 PM	0.47	7	А	26	0.49	7	А	27			
2034 AM	0.58	7	А	39	0.60	8	А	42			
2034 PM	0.58	8	А	38	0.59	8	А	41			
		Seaso	nal Peak P	eriod (Jan	uary)						
2024 AM	0.55	7	А	35	0.57	7	А	37			
2024 PM	0.54	8	А	32	0.55	8	А	34			
2034 AM	0.66	8	А	51	0.68	8	А	56			
2034 PM	0.68	9	А	55	0.70	10	А	60			

Table 3.4: Yamba Road / Treelands Drive SIDRA Results Summary

As shown, the Yamba Road / Treelands Drive intersection is expected to operate within acceptable performance limits at the expected 10-year design horizon (2034) with or without the proposed development and seasonality factors applied. Furthermore, the introduction of development trips is expected to have a negligible impact on intersection performance with overall average intersection delay shown to increase by less than one second in all scenarios tested.

3.3.3 Yamba Road / Carrs Drive

The Yamba Road / Carrs Drive intersection layout as assessed in SIDRA is shown in Figure 3.3.

Figure 3.3: Yamba Road / Carrs Drive SIDRA Intersection Layout

Table 3.5 summarises the SIDRA results for the Yamba Road / Carrs Drive intersection for AM and PM peak hours.

		Backg	round		Design						
Year	DOS (v/c)	Delay (sec)	LOS	Queue (m)	DOS (v/c)	Delay (sec)	LOS	Queue (m)			
Survey Peak Period (July)											
2024 AM	0.51	7	А	30	0.55	8	А	35			
2024 PM	0.51	6	А	31	0.56	6	А	36			
2034 AM	0.61	8	А	45	0.66	9	А	55			
2034 PM	0.59	6	A	40	0.64	7	А	46			
		Seaso	nal Peak P	eriod (Jan	uary)						
2024 AM	0.59	8	А	41	0.64	9	А	49			
2024 PM	0.58	6	А	38	0.63	7	А	44			
2034 AM	0.71	9	А	66	0.77	11	А	81			
2034 PM	0.66	7	А	50	0.71	7	А	59			

 Table 3.5:
 Yamba Road / Carrs Drive SIDRA Results Summary

As shown, the Yamba Road / Carrs Drive intersection is expected to operate within acceptable performance limits at the expected 10-year design horizon (2034) with or without the proposed development and seasonality factors applied. Furthermore, the introduction of development trips is expected to have a negligible impact on intersection performance with overall average intersection delay shown to increase by less than one second in all scenarios tested.

3.3.4 Yamba Road / Shores Drive

The Yamba Road / Shores Drive intersection layout as assessed in SIDRA is shown in Figure 3.4.

Figure 3.4: Yamba Road / Shores Drive SIDRA Intersection Layout

Table 3.6 summarises the SIDRA results for the Yamba Road / Shores Drive intersection for AM and PM peak hours.

	Background				Design						
Year	DOS (v/c)	Delay (sec)	LOS	Queue (m)	DOS (v/c)	Delay (sec)	LOS	Queue (m)			
Survey Peak Period (July)											
2024 AM	0.55	6	А	34	0.59	6	А	38			
2024 PM	0.48	5	А	33	0.51	5	А	36			
2034 AM	0.64	6	А	46	0.68	7	А	51			
2034 PM	0.56	6	A	43	0.58	6	A	48			
		Seaso	nal Peak P	eriod (Jan	uary)						
2024 AM	0.62	6	А	42	0.65	6	А	48			
2024 PM	0.54	6	А	40	0.56	6	А	44			
2034 AM	0.73	7	А	59	0.75	8	А	64			
2034 PM	0.64	6	А	55	0.65	6	А	61			

 Table 3.6:
 Yamba Road / Shores Drive SIDRA Results Summary

As shown, the Yamba Road / Shores Drive intersection is expected to operate within acceptable performance limits at the expected 10-year design horizon (2034) with or without the proposed development and seasonality factors applied. Furthermore, the introduction of development trips is expected to have a negligible impact on intersection performance with overall average intersection delay shown to increase by less than one second in all scenarios tested.

3.3.5 Carrs Drive / Miles Street

The Carrs Drive / Miles Street intersection layout as assessed in SIDRA is shown in Figure 3.5.

Figure 3.5: Carrs Drive / Miles Street SIDRA Intersection Layout

It is noted that the intersection was not assessed in 2024 as Miles Street is yet to be constructed and unlikely to be constructed prior to the expected opening of the proposed development. Table 3.7 summarises the SIDRA results for the Carrs Drive / Miles Street intersection for AM and PM peak hours.

	Design			
Approach	DOS (v/c)	Delay (sec)	LOS	Queue (m)
	2034 A	M Peak		
Carrs Drive (S)	0.076	0.0	NA	0.0
Miles Street (E)	0.132	6.3	А	3.2
Carrs Drive (N)	0.039	2.8	NA	0.0
All Approaches	0.132	3.0	NA	3.2
	2034 P	M Peak		
Carrs Drive (S)	0.030	0.1	NA	0.1
Miles Street (E)	0.058	6.4	А	1.3
Carrs Drive (N)	0.139	3.0	NA	1.3
All Approaches	0.139	3.0	NA	1.3

Table 3.7: Carrs Drive / Miles Street SIDRA Results Summary

As shown, the Carrs Drive / Miles Street intersection is expected to operate within acceptable performance limits at the expected 10-year design horizon (2034). Importantly, assessment shows that development trips are not expected to have a notable impact on the operations of the Carrs Drive / Miles Street intersection if delivered by others as a part of WYURA development.

3.3.6 SIDRA Results Summary

The assessment detailed above indicates that the existing road network and key intersections surrounding the subject site are currently operating within capacity and will continue to do so for the foreseeable future. Peak hour vehicle trips associated with the proposed development are also expected to have a negligible impact on the performance of the surrounding network and key intersections. As such, the proposed development does not warrant any external mitigation measures or trigger any upgrades to external intersections.

3.4 Daily Traffic Analysis

The Transport for NSW (formerly Roads and Maritime Services) *Guide to Traffic Generating Developments: Technical Direction (2013)* was used to source daily trip generation rates for the proposed development. Adopting the guide's rate of 2.1 daily trips per dwelling, the proposed development is forecast to generate in the order of 454 daily vehicle trips.

As per the planning for the West Yamba Urban Release Area, the section of Carrs Drive fronting the subject site is planned as a local road, changing to a collector road to the north of the site. The forecast daily traffic generation of the subject site, combined with the few existing dwelling to the south, will not exceed the daily capacity of the local road type (2,000vpd). The existing road width of 7m is also consistent with minimum width requirements for a local road cross-section as per the Northern Rivers Design Manual.

Based on the above, the existing form of Carrs Drive is considered suitable to cater for expected daily traffic generation of the proposed development, with no road widening required. As shown on development plans, it is however proposed that the western edge of Carrs Drive, fronting the subject site, be upgraded to kerb and channel consistent with the planned urbanisation of the urban release area.

4. PARKING & LAYOUT ASSESSMENT

4.1 Car Parking Provision

The car parking provision has been assessed against the relevant requirements of the *Local Government (Manufactured Home Estates, Caravan Parks, Camping Grounds and Moveable Dwellings) Regulation* (2021). As per the regulation, the development shall provide an area for at least one car to park on each Lot.

Table 4.1 also details the visitor car parking requirements and provision for the proposed development.

Table 4.1: Car Parking Requirement and Provision
--

Land Use	Туре	Code	Quantity	Parking Rate	Required	Proposed
Manufactured	Visitor	Local	040 545	20 spaces + 1 per 7 dwellings > 140	31 spaces	49 spaces
Home Estate	PWD	Government Regulation	216 Lots	1 per 100 dwellings	3 spaces	4 spaces
				Total	34 spaces	53 spaces

As shown, the proposed development's parking provisions exceed the requirements of the Local Government Regulation (2021).

4.2 Bicycle Parking Provision

Neither Council's DCP nor the Local Government Regulation (2021) specify bicycle parking requirements for a manufactured home estate. It is expected that, if required, residents will be able to securely store their bicycle within their property and as such no resident bicycle parking is required.

4.3 Internal Geometric Layout

The on-site parking geometric layout has been assessed in accordance with the relevant requirements of Council's DCP, Local Government Regulation (2021) and AS2890. The outcomes of the assessment are summarised in Table 4.2.

 Table 4.2: Internal Geometric Layout Assessment

Design Element	Requirements	Provided	Compliant
Entrance Roads (Divided)	5m sealed width on each side of median	5m sealed width on each side of median	See Note
Road Reserve	Major Access Road: 8.5m	Min. 8.5m width	Yes
Sealed Portion of Access Road	Major Access Road: 6m	Min. 6m width	Yes
Visitor Car Parking Bays (Angle Parking)	2.5m x 5.4m	2.5m x 5.4m	Yes
Visitor Car Parking Bays (Other)	2.5m x 6.1m	2.5m x 6.1m	Yes
PWD Car Parking Bays	2.4m x 5.4m with adjacent shared area of the same size	2.4m x 5.4m with adjacent shared area of the same size	Yes

Note, the width of the proposed entrance road is 5m on each side of the median in line with the Local Government Regulation (2001). The proposed sliding gate does however result in a minor 'pinch-

point' at the entrance to the site with 3.7m width at the gate location but proposed entrance / exit widths are compliant with minimum requirements specified in AS2890 at all locations

Noting the above, and as shown in Table 4.2, the on-site internal geometric layout is therefore considered compliant with the relevant requirements of Council's DCP, Local Government Regulation (2021) and AS2890.

5. SERVICING ASSESSMENT

5.1 Refuse Collection

Refuse collection is proposed to occur for each lot individually by a side-loading refuse collection vehicle (RCV) on the internal roadway. Where refuse vehicles cannot turn around in short, 'dead-end' aisles, a nearby bin collection location is identified for the relevant Lots. A swept path assessment has been provided at **Appendix E** to demonstrate that a side-loading RCV can safely and efficiently access these collection points

5.2 Servicing

It is expected that servicing will be undertaken by an 8.8m MRV (i.e. removal truck). As RCVs can safely manoeuvre the site, it is expected that an 8.8m MRV can safely and efficiently service the site.

6. ACCESS ASSESSMENT

6.1 Vehicular Access

The development proposes a single, all-movements crossover on Carrs Drive. This design and construction of this crossover shall comply with the relevant requirements of AS2890.1 and the Northern Rivers Design Manuel as summarised in Table 6.1.

Table 6.1: Vehicular Access

Design Element	Standard	Details	Requirement
Access Facility Category	Australian Standards AS2890.1	Type 2 as per AS2890.1 - Primarily User Class 1A, 100-301 parking spaces (including resident spaces on Lots) and local road frontage	Min. 3m width on entry and exit measured at the property boundary
Crossover Form	Northern Rivers Design Manual	Units on Local Streets	As per Standard Drawing R-05
Pedestrian Sight Line Triangle	Australian Standards AS2890.1	Pedestrian sight line triangle provided on the exit side of the driveway to be kept clear of all obstructions to visibility.	2.0m along the property boundary and 2.5m into site as per Figure 3.3 in AS2890.1.

6.2 Sight Distance

A sight distance assessment for the proposed development was undertaken in accordance with AS2890.1 as outlined in Table 6.2

Table 6.2: Sight Distance Review

Access	Direction	Dested Speed	Sight D	Compliant	
ALLESS	Direction	Posted Speed	Available	Required	Compliant
	North	60km/h	60km/h 200m+ 83m		Vac
Carrs Drive	South	ουκπ/Π			Yes

The available sight distance at vehicle driver eye-height (i.e. 1.2m) is shown in Figure 6.1.

Figure 6.1: Available Sight Distance

As shown, Carrs Drive is straight and flat in the vicinity of the proposed access location with no notable obstructions to sight lines. An aerial of the available sight distance is shown in Figure 6.2.

Source: Nearmap (edited by Bitzios)

Figure 6.2: Aerial Sight Distance Review

The proposed development's vehicular access location complies with sight distance requirements and is therefore not expected to introduce any adverse road safety conditions.

7. SUMMARY AND CONCLUSIONS

The key findings of the TIA for the proposed Manufactured Housing Estate development at 120 Carrs Drive, Yamba are as follows:

- The proposal is for a manufactured housing estate comprising of 216 lots
- The development site currently has limited access to alternate transport services however facilities are expected to improve with future development of the WYURA
- The proposed development is estimated to generate in the order of 87 vehicle trips in the AM and PM peak hours
- SIDRA assessment demonstrates that nearby intersections are expected to operate within acceptable performance limits for the 10-year design horizon, with or without the proposed development and consideration to seasonal peaks. Development trips are also shown to have a negligible impact on intersection performance
- With the provision of a resident car parking area on each Lot, proposed parking provisions meet the relevant requirements of the Local Government Regulation (2021)
- Bicycle parking spaces are not specified in Council's DCP nor the Local Government Regulation 2021), it is expected residents will securely store their bicycles within their property
- The on-site internal geometric layout is considered compliant with the relevant requirements of Council's DCP, Local Government Regulation (2021) and AS2890
- Refuse collection is proposed on-street by a side-loading RCV, swept paths demonstrate that the RCV can safely and efficiently manoeuvre the site
- Infrequent servicing is proposed to occur on-site by an MRV (removalist truck)
- Ample sight lines are present in both directions from the proposed access location as per the requirements of AS2890.

Based on the above assessment, it is concluded that there are no significant traffic or transport impacts associated with the proposed development to preclude its approval and relevant conditioning on transport planning grounds.

Appendix A: Development Plans

Appendix B: Traffic Survey Data

	Turning Movement Count Summary		
Site ID:	1		
Location	Yamba Rd & Treelands Dr/Somerset Pl, Yamba		
Date	20-July-2022		
Surveyed Time:	: 6:00 AM to 9:00 AM		
Weather	Fine		
Data for hour starting:	8:00 AM 🔻 to 9:00 AM		
Vehicle Class:	ALL VEHICLES		

	Turning Movement Count Summary		
	Site ID:	1	
	Location:	Yamba Rd & Treelands Dr/Somerset Pl, Yamba	
	Date:	20-July-2022	
Surv	eyed Time:	3:00 PM to 6:00 PM	
	Weather:	Fine	
Data for ho	ur starting:	3:15 PM 🔻 to 4:15 PM	
Ve	hicle Class:	ALL VEHICLES 🔻	

	Turning Movement Count Summary		
	Site ID: 2		
	Location: Yamba Rd & Carrs Dr, Yamba		
	Date: 20-July-2022		
Surv	reyed Time: 6:00 AM to 9:00 AM		
	Weather: Fine		
Data for ho	ur starting: 8:00 AM v to 9:00 AM		
Ve	ehicle Class: ALL VEHICLES		

	Turning Movement Count Summary
	Site ID: 2
	Location: Yamba Rd & Carrs Dr, Yamba
	Date: 20-July-2022
Surv	eyed Time: 3:00 PM to 6:00 PM
	Weather: Fine
Data for ho	ur starting: 3:15 PM v to 4:15 PM
Ve	hicle Class: ALL VEHICLES ▼

	Turning Movement Count Summary
	Site ID: 3
	Location: Yamba Rd & Shores Dr, Yamba
	Date: 20-July-2022
Surv	eyed Time: 6:00 AM to 9:00 AM
	Weather: Fine
Data for ho	ur starting: 8:00 AM v to 9:00 AM
Ve	hicle Class: ALL VEHICLES ▼

	Turning Movement Count Summary		
Site ID:	3		
Location:	Yamba Rd & Shores Dr, Yamba		
Date:	20-July-2022		
Surveyed Time:	3:00 PM to 6:00 PM		
Weather:	Fine		
Data for hour starting:	3:15 PM < to 4:15 PM		
Vehicle Class:	ALL VEHICLES		

Appendix C: Network Diagrams

Appendix D: SIDRA Outputs

SITE LAYOUT V Site: 101 [2024 BG AM (Site Folder: General)]

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Created: Sunday, 3 September 2023 1:03:23 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Treelands Drive Intersection.sip9

V Site: 101 [2024 BG AM (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class		lows HV/1	ا-ا [Total]	OWS	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m		nate	Oycics	km/h
South	n: Som	erset Pla	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.010	7.0	LOS A	0.1	0.4	0.71	0.62	0.71	41.1
2	T1	All MCs	1	0.0	1	0.0	0.010	6.9	LOS A	0.1	0.4	0.71	0.62	0.71	23.6
3	R2	All MCs	4	0.0	4	0.0	0.010	11.4	LOS A	0.1	0.4	0.71	0.62	0.71	37.9
Appro	bach		7	0.0	7	0.0	0.010	9.5	LOS A	0.1	0.4	0.71	0.62	0.71	36.9
East:	Yamba	a Rd (E)													
4	L2	All MCs	4	0.0	4	0.0	0.481	5.0	LOS A	3.9	28.6	0.52	0.53	0.52	41.5
5	T1	All MCs	396	6.4	396	6.4	0.481	5.4	LOS A	3.9	28.6	0.52	0.53	0.52	47.6
6	R2	All MCs	187	0.7	187	0.7	0.481	9.9	LOS A	3.9	28.6	0.52	0.53	0.52	37.4
Appro	bach		587	4.5	587	4.5	0.481	6.8	LOS A	3.9	28.6	0.52	0.53	0.52	44.8
North	: Treel	ands Dr ((N)												
7	L2	All MCs	172	4.0	172	4.0	0.353	6.5	LOS A	2.3	16.9	0.65	0.66	0.65	40.4
8	T1	All MCs	2	0.0	2	0.0	0.353	6.6	LOS A	2.3	16.9	0.65	0.66	0.65	34.0
9	R2	All MCs	164	4.0	164	4.0	0.353	11.3	LOS A	2.3	16.9	0.65	0.66	0.65	42.5
Appro	bach		338	4.0	338	4.0	0.353	8.8	LOS A	2.3	16.9	0.65	0.66	0.65	41.4
West	: Yamb	a Rd (W))												
10	L2	All MCs	124	6.1	124	6.1	0.433	5.3	LOS A	3.2	23.7	0.51	0.50	0.51	45.5
11	T1	All MCs	384	6.0	384	6.0	0.433	5.5	LOS A	3.2	23.7	0.51	0.50	0.51	48.2
12	R2	All MCs	2	0.0	2	0.0	0.433	10.0	LOS A	3.2	23.7	0.51	0.50	0.51	44.8
Appro	bach		511	6.0	511	6.0	0.433	5.4	LOS A	3.2	23.7	0.51	0.50	0.51	47.6
All Ve	hicles		1443	4.9	1443	4.9	0.481	6.8	LOS A	3.9	28.6	0.55	0.55	0.55	45.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:11 PM

W Site: 101 [2024 BG PM (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class			Fl [Total]	ows	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of	Speed
			veh/h		veh/h	⊓vj %	v/c	sec		veh	m Dist j		Nale	Cycles	km/h
South	n: Som	erset Pla	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.011	6.4	LOS A	0.1	0.4	0.68	0.60	0.68	41.9
2	T1	All MCs	2	0.0	2	0.0	0.011	6.4	LOS A	0.1	0.4	0.68	0.60	0.68	24.0
3	R2	All MCs	4	0.0	4	0.0	0.011	10.9	LOS A	0.1	0.4	0.68	0.60	0.68	38.7
Appro	bach		8	0.0	8	0.0	0.011	8.7	LOS A	0.1	0.4	0.68	0.60	0.68	36.0
East:	Yamba	a Rd (E)													
4	L2	All MCs	2	0.0	2	0.0	0.430	5.0	LOS A	3.3	24.0	0.51	0.55	0.51	41.2
5	T1	All MCs	291	3.8	291	3.8	0.430	5.3	LOS A	3.3	24.0	0.51	0.55	0.51	47.4
6	R2	All MCs	232	1.1	232	1.1	0.430	9.9	LOS A	3.3	24.0	0.51	0.55	0.51	37.2
Appro	bach		524	2.6	524	2.6	0.430	7.3	LOS A	3.3	24.0	0.51	0.55	0.51	43.4
North	: Treel	ands Dr (N)												
7	L2	All MCs	268	1.5	268	1.5	0.454	6.6	LOS A	3.3	23.6	0.70	0.66	0.70	41.1
8	T1	All MCs	2	0.0	2	0.0	0.454	6.8	LOS A	3.3	23.6	0.70	0.66	0.70	34.2
9	R2	All MCs	169	3.2	169	3.2	0.454	11.5	LOS A	3.3	23.6	0.70	0.66	0.70	42.7
Appro	bach		440	2.1	440	2.1	0.454	8.5	LOS A	3.3	23.6	0.70	0.66	0.70	41.7
West	: Yamb	a Rd (W)	1												
10	L2	All MCs	153	6.4	153	6.4	0.471	5.7	LOS A	3.6	25.8	0.58	0.53	0.58	45.0
11	T1	All MCs	383	2.7	383	2.7	0.471	5.8	LOS A	3.6	25.8	0.58	0.53	0.58	48.3
12	R2	All MCs	1	0.0	1	0.0	0.471	10.3	LOS A	3.6	25.8	0.58	0.53	0.58	44.4
Appro	bach		537	3.7	537	3.7	0.471	5.8	LOS A	3.6	25.8	0.58	0.53	0.58	47.5
All Ve	hicles		1509	2.9	1509	2.9	0.471	7.1	LOS A	3.6	25.8	0.59	0.58	0.59	44.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:12 PM

V Site: 101 [2034 BG AM (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class		ows ⊔\/1	FI [Total]	ows ม\/ 1	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	~~ %	v/c	sec		veh	m		Tale	Cycles	km/h
South	n: Som	erset Pla	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.014	8.3	LOS A	0.1	0.6	0.80	0.66	0.80	39.6
2	T1	All MCs	1	0.0	1	0.0	0.014	8.3	LOS A	0.1	0.6	0.80	0.66	0.80	22.7
3	R2	All MCs	5	0.0	5	0.0	0.014	12.8	LOS A	0.1	0.6	0.80	0.66	0.80	36.4
Appro	bach		8	0.0	8	0.0	0.014	11.1	LOS A	0.1	0.6	0.80	0.66	0.80	35.6
East:	Yamba	a Rd (E)													
4	L2	All MCs	4	0.0	4	0.0	0.579	5.4	LOS A	5.3	38.7	0.64	0.57	0.64	40.8
5	T1	All MCs	459	6.4	459	6.4	0.579	5.8	LOS A	5.3	38.7	0.64	0.57	0.64	47.0
6	R2	All MCs	218	0.7	218	0.7	0.579	10.3	LOS A	5.3	38.7	0.64	0.57	0.64	36.8
Appro	bach		681	4.5	681	4.5	0.579	7.3	LOS A	5.3	38.7	0.64	0.57	0.64	44.2
North	: Treel	ands Dr (N)												
7	L2	All MCs	203	4.0	203	4.0	0.454	7.3	LOS A	3.3	24.0	0.75	0.70	0.76	39.5
8	T1	All MCs	2	0.0	2	0.0	0.454	7.4	LOS A	3.3	24.0	0.75	0.70	0.76	32.9
9	R2	All MCs	196	4.0	196	4.0	0.454	12.1	LOS A	3.3	24.0	0.75	0.70	0.76	41.6
Appro	bach		401	4.0	401	4.0	0.454	9.7	LOS A	3.3	24.0	0.75	0.70	0.76	40.6
West	: Yamb	a Rd (W)	I												
10	L2	All MCs	149	6.1	149	6.1	0.533	5.7	LOS A	4.5	32.8	0.62	0.54	0.62	44.7
11	T1	All MCs	456	6.0	456	6.0	0.533	5.9	LOS A	4.5	32.8	0.62	0.54	0.62	47.6
12	R2	All MCs	2	0.0	2	0.0	0.533	10.4	LOS A	4.5	32.8	0.62	0.54	0.62	44.1
Appro	bach		607	6.0	607	6.0	0.533	5.9	LOS A	4.5	32.8	0.62	0.54	0.62	47.0
All Ve	hicles		1698	4.9	1698	4.9	0.579	7.3	LOS A	5.3	38.7	0.66	0.59	0.66	44.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:13 PM

W Site: 101 [2034 BG PM (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class		OWS	Fl [Total]		Satn	Delay	Service	Qu [Veh.	eue	Que	Stop Rate	No. of	Speed
			veh/h		veh/h	⊓vj %	v/c	sec		ven. veh	Dist] m		Rate	Cycles	km/h
South	n: Som	erset Pla	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.013	7.6	LOS A	0.1	0.5	0.76	0.64	0.76	40.8
2	T1	All MCs	2	0.0	2	0.0	0.013	7.5	LOS A	0.1	0.5	0.76	0.64	0.76	23.3
3	R2	All MCs	4	0.0	4	0.0	0.013	12.0	LOS A	0.1	0.5	0.76	0.64	0.76	37.6
Appro	bach		8	0.0	8	0.0	0.013	9.8	LOS A	0.1	0.5	0.76	0.64	0.76	35.1
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.525	5.4	LOS A	4.6	32.7	0.61	0.57	0.61	40.6
5	T1	All MCs	341	3.8	341	3.8	0.525	5.7	LOS A	4.6	32.7	0.61	0.57	0.61	46.9
6	R2	All MCs	272	1.1	272	1.1	0.525	10.2	LOS A	4.6	32.7	0.61	0.57	0.61	36.7
Appro	bach		616	2.6	616	2.6	0.525	7.7	LOS A	4.6	32.7	0.61	0.57	0.61	42.9
North	: Treel	ands Dr (N)												
7	L2	All MCs	312	1.5	312	1.5	0.571	8.4	LOS A	5.3	37.5	0.82	0.75	0.92	39.0
8	T1	All MCs	2	0.0	2	0.0	0.571	8.6	LOS A	5.3	37.5	0.82	0.75	0.92	31.9
9	R2	All MCs	202	3.2	202	3.2	0.571	13.3	LOS A	5.3	37.5	0.82	0.75	0.92	40.9
Appro	bach		516	2.2	516	2.2	0.571	10.3	LOS A	5.3	37.5	0.82	0.75	0.92	39.8
West	Yamb	a Rd (W)	1												
10	L2	All MCs	183	6.4	183	6.4	0.576	6.3	LOS A	5.0	36.0	0.70	0.59	0.70	44.3
11	T1	All MCs	445	2.7	445	2.7	0.576	6.4	LOS A	5.0	36.0	0.70	0.59	0.70	47.7
12	R2	All MCs	1	0.0	1	0.0	0.576	10.9	LOS A	5.0	36.0	0.70	0.59	0.70	43.6
Appro	bach		629	3.8	629	3.8	0.576	6.4	LOS A	5.0	36.0	0.70	0.59	0.70	46.8
All Ve	hicles		1769	2.9	1769	2.9	0.576	8.0	LOS A	5.3	37.5	0.70	0.63	0.73	43.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:14 PM

₩ Site: 101 [2024 DES AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class		lows	FI [Total]	lows	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m		TALE	Cycles	km/h
South	n: Som	erset Pla	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.010	7.2	LOS A	0.1	0.4	0.73	0.62	0.73	41.0
2	T1	All MCs	1	0.0	1	0.0	0.010	7.1	LOS A	0.1	0.4	0.73	0.62	0.73	23.4
3	R2	All MCs	4	0.0	4	0.0	0.010	11.6	LOS A	0.1	0.4	0.73	0.62	0.73	37.7
Appro	bach		7	0.0	7	0.0	0.010	9.7	LOS A	0.1	0.4	0.73	0.62	0.73	36.8
East:	Yamba	a Rd (E)													
4	L2	All MCs	4	0.0	4	0.0	0.495	5.1	LOS A	4.1	29.6	0.53	0.53	0.53	41.5
5	T1	All MCs	413	3.8	413	3.8	0.495	5.4	LOS A	4.1	29.6	0.53	0.53	0.53	47.7
6	R2	All MCs	196	1.1	196	1.1	0.495	9.9	LOS A	4.1	29.6	0.53	0.53	0.53	37.4
Appro	bach		613	2.9	613	2.9	0.495	6.8	LOS A	4.1	29.6	0.53	0.53	0.53	44.8
North	: Treel	ands Dr (N)												
7	L2	All MCs	174	1.5	174	1.5	0.351	6.4	LOS A	2.3	16.7	0.64	0.66	0.64	40.9
8	T1	All MCs	2	0.0	2	0.0	0.351	6.6	LOS A	2.3	16.7	0.64	0.66	0.64	34.1
9	R2	All MCs	164	3.2	164	3.2	0.351	11.3	LOS A	2.3	16.7	0.64	0.66	0.64	42.6
Appro	bach		340	2.3	340	2.3	0.351	8.7	LOS A	2.3	16.7	0.64	0.66	0.64	41.7
West	: Yamb	a Rd (W)													
10	L2	All MCs	124	6.4	124	6.4	0.436	5.3	LOS A	3.2	23.4	0.52	0.50	0.52	45.4
11	T1	All MCs	389	2.7	389	2.7	0.436	5.5	LOS A	3.2	23.4	0.52	0.50	0.52	48.6
12	R2	All MCs	2	0.0	2	0.0	0.436	10.0	LOS A	3.2	23.4	0.52	0.50	0.52	44.7
Appro	bach		516	3.6	516	3.6	0.436	5.5	LOS A	3.2	23.4	0.52	0.50	0.52	47.9
All Ve	ehicles		1476	3.0	1476	3.0	0.495	6.8	LOS A	4.1	29.6	0.56	0.55	0.56	45.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:15 PM

W Site: 101 [2024 DES PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class		lows HV/1	FI [Total]	ows H\/ 1	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m		nato	Cyclos	km/h
South	n: Som	erset Pla	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.011	6.6	LOS A	0.1	0.5	0.69	0.61	0.69	41.8
2	T1	All MCs	2	0.0	2	0.0	0.011	6.5	LOS A	0.1	0.5	0.69	0.61	0.69	24.0
3	R2	All MCs	4	0.0	4	0.0	0.011	11.0	LOS A	0.1	0.5	0.69	0.61	0.69	38.6
Appro	bach		8	0.0	8	0.0	0.011	8.8	LOS A	0.1	0.5	0.69	0.61	0.69	35.9
East:	Yamba	a Rd (E)													
4	L2	All MCs	2	0.0	2	0.0	0.441	5.0	LOS A	3.5	25.0	0.51	0.55	0.51	41.1
5	T1	All MCs	298	3.8	298	3.8	0.441	5.3	LOS A	3.5	25.0	0.51	0.55	0.51	47.4
6	R2	All MCs	238	1.1	238	1.1	0.441	9.9	LOS A	3.5	25.0	0.51	0.55	0.51	37.1
Appro	bach		538	2.6	538	2.6	0.441	7.3	LOS A	3.5	25.0	0.51	0.55	0.51	43.4
North	: Treel	ands Dr (N)												
7	L2	All MCs	278	1.5	278	1.5	0.470	6.7	LOS A	3.5	24.7	0.72	0.67	0.72	41.0
8	T1	All MCs	2	0.0	2	0.0	0.470	6.9	LOS A	3.5	24.7	0.72	0.67	0.72	34.0
9	R2	All MCs	169	3.2	169	3.2	0.470	11.6	LOS A	3.5	24.7	0.72	0.67	0.72	42.7
Appro	bach		449	2.1	449	2.1	0.470	8.6	LOS A	3.5	24.7	0.72	0.67	0.72	41.6
West	: Yamb	a Rd (W)													
10	L2	All MCs	153	6.4	153	6.4	0.486	5.7	LOS A	3.7	27.0	0.59	0.54	0.59	44.9
11	T1	All MCs	397	2.7	397	2.7	0.486	5.9	LOS A	3.7	27.0	0.59	0.54	0.59	48.2
12	R2	All MCs	1	0.0	1	0.0	0.486	10.4	LOS A	3.7	27.0	0.59	0.54	0.59	44.3
Appro	bach		551	3.7	551	3.7	0.486	5.8	LOS A	3.7	27.0	0.59	0.54	0.59	47.4
All Ve	ehicles		1546	2.8	1546	2.8	0.486	7.2	LOS A	3.7	27.0	0.60	0.58	0.60	44.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:15 PM

₩ Site: 101 [2034 DES AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Performa	ance										
Mov	Turn	Mov	Demano		rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class	Flows [Total HV		lows HV 1	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of Cycles	Speed
				veh/h	%	v/c	sec		veh	m			,	km/h
South	: Som	erset Pla	ce (S)											
1	L2	All MCs	2 0.0	2	0.0	0.014	8.6	LOS A	0.1	0.6	0.81	0.67	0.81	39.3
2	T1	All MCs	1 0.0) 1	0.0	0.014	8.6	LOS A	0.1	0.6	0.81	0.67	0.81	22.5
3	R2	All MCs	5 0.0) 5	0.0	0.014	13.1	LOS A	0.1	0.6	0.81	0.67	0.81	36.1
Appro	bach		8 0.0	8	0.0	0.014	11.4	LOS A	0.1	0.6	0.81	0.67	0.81	35.3
East:	Yamba	a Rd (E)												
4	L2	All MCs	5 0.0) 5	0.0	0.599	5.5	LOS A	5.7	41.3	0.66	0.57	0.66	40.7
5	T1	All MCs	476 6.4	476	6.4	0.599	5.9	LOS A	5.7	41.3	0.66	0.57	0.66	46.9
6	R2	All MCs	225 0.7	225	0.7	0.599	10.4	LOS A	5.7	41.3	0.66	0.57	0.66	36.7
Appro	bach		706 4.5	706	4.5	0.599	7.3	LOS A	5.7	41.3	0.66	0.57	0.66	44.1
North	: Treel	ands Dr (N)											
7	L2	All MCs	205 4.0	205	4.0	0.463	7.4	LOS A	3.5	25.2	0.77	0.71	0.78	39.3
8	T1	All MCs	2 0.0	2	0.0	0.463	7.5	LOS A	3.5	25.2	0.77	0.71	0.78	32.8
9	R2	All MCs	196 4.0	196	4.0	0.463	12.3	LOS A	3.5	25.2	0.77	0.71	0.78	41.5
Appro	bach		403 4.0	403	4.0	0.463	9.8	LOS A	3.5	25.2	0.77	0.71	0.78	40.4
West	Yamb	a Rd (W)												
10	L2	All MCs	149 61.0	149	61.0	0.586	7.5	LOS A	5.1	41.6	0.68	0.56	0.68	42.1
11	T1	All MCs	461 6.0	461	6.0	0.586	6.1	LOS A	5.1	41.6	0.68	0.56	0.68	47.1
12	R2	All MCs	2 0.0	2	0.0	0.586	10.5	LOS A	5.1	41.6	0.68	0.56	0.68	43.5
Appro	bach		613 19.4	613	19.4	0.586	6.4	LOS A	5.1	41.6	0.68	0.56	0.68	46.0
All Ve	hicles		1731 9.6	5 1731	9.6	0.599	7.6	LOS A	5.7	41.6	0.69	0.60	0.70	44.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:16 PM

W Site: 101 [2034 DES PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov	Turn	Mov		nand		rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class			FI [Total] veh/h	lows HV] %	Satn v/c	Delay sec	Service	Qu [Veh. veh	eue Dist] m	Que	Stop Rate	No. of Cycles	Speed km/h
South	n: Som	erset Pla		70	Ven/m	70	v/C	360	_	Ven		_	_		KI11/11
1	L2	All MCs	2	0.0	2	0.0	0.013	7.7	LOS A	0.1	0.6	0.77	0.64	0.77	40.7
2	T1	All MCs	2	0.0	2	0.0	0.013	7.7	LOS A	0.1	0.6	0.77	0.64	0.77	23.3
3	R2	All MCs	4	0.0	4	0.0	0.013	12.2	LOS A	0.1	0.6	0.77	0.64	0.77	37.5
Appro	bach		8	0.0	8	0.0	0.013	10.0	LOS A	0.1	0.6	0.77	0.64	0.77	34.9
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.536	5.4	LOS A	4.8	34.0	0.62	0.58	0.62	40.5
5	T1	All MCs	348	3.8	348	3.8	0.536	5.7	LOS A	4.8	34.0	0.62	0.58	0.62	46.9
6	R2	All MCs	278	1.1	278	1.1	0.536	10.3	LOS A	4.8	34.0	0.62	0.58	0.62	36.6
Appro	bach		629	2.6	629	2.6	0.536	7.7	LOS A	4.8	34.0	0.62	0.58	0.62	42.8
North	: Treel	ands Dr ((N)												
7	L2	All MCs	321	1.5	321	1.5	0.591	8.9	LOS A	5.7	40.5	0.84	0.77	0.96	38.5
8	T1	All MCs	2	0.0	2	0.0	0.591	9.0	LOS A	5.7	40.5	0.84	0.77	0.96	31.3
9	R2	All MCs	202	3.2	202	3.2	0.591	13.8	LOS A	5.7	40.5	0.84	0.77	0.96	40.5
Appro	bach		525	2.1	525	2.1	0.591	10.8	LOS A	5.7	40.5	0.84	0.77	0.96	39.3
West	: Yamb	a Rd (W))												
10	L2	All MCs	183	6.4	183	6.4	0.593	6.6	LOS A	5.4	38.7	0.71	0.60	0.73	44.1
11	T1	All MCs	459	2.7	459	2.7	0.593	6.7	LOS A	5.4	38.7	0.71	0.60	0.73	47.5
12	R2	All MCs	1	0.0	1	0.0	0.593	11.2	LOS A	5.4	38.7	0.71	0.60	0.73	43.5
Appro	bach		643	3.7	643	3.7	0.593	6.6	LOS A	5.4	38.7	0.71	0.60	0.73	46.7
All Ve	hicles		1806	2.9	1806	2.9	0.593	8.2	LOS A	5.7	40.5	0.72	0.64	0.76	43.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:17 PM

🐺 Site: 101 [2024 BG AM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	t Perfo	rma											
Mov	Turn	Mov		nand		rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class		lows	FI [Total]	lows	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	~~ %	v/c	sec		veh	m		TALE	Cycles	km/h
South	n: Som	erset Pla	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.013	7.8	LOS A	0.1	0.6	0.77	0.65	0.77	40.1
2	T1	All MCs	1	0.0	1	0.0	0.013	7.8	LOS A	0.1	0.6	0.77	0.65	0.77	23.0
3	R2	All MCs	5	0.0	5	0.0	0.013	12.3	LOS A	0.1	0.6	0.77	0.65	0.77	36.9
Appro	bach		8	0.0	8	0.0	0.013	10.6	LOS A	0.1	0.6	0.77	0.65	0.77	36.1
East:	Yamba	a Rd (E)													
4	L2	All MCs	4	0.0	4	0.0	0.545	5.3	LOS A	4.8	35.0	0.60	0.55	0.60	41.1
5	T1	All MCs	439	6.4	439	6.4	0.545	5.7	LOS A	4.8	35.0	0.60	0.55	0.60	47.3
6	R2	All MCs	208	0.7	208	0.7	0.545	10.1	LOS A	4.8	35.0	0.60	0.55	0.60	37.0
Appro	bach		652	4.5	652	4.5	0.545	7.1	LOS A	4.8	35.0	0.60	0.55	0.60	44.4
North	: Treel	ands Dr ((N)												
7	L2	All MCs	191	4.0	191	4.0	0.411	6.9	LOS A	2.9	20.8	0.71	0.68	0.71	39.9
8	T1	All MCs	2	0.0	2	0.0	0.411	7.0	LOS A	2.9	20.8	0.71	0.68	0.71	33.4
9	R2	All MCs	182	4.0	182	4.0	0.411	11.8	LOS A	2.9	20.8	0.71	0.68	0.71	42.0
Appro	bach		375	4.0	375	4.0	0.411	9.3	LOS A	2.9	20.8	0.71	0.68	0.71	41.0
West	Yamb	a Rd (W))												
10	L2	All MCs	139	6.1	139	6.1	0.494	5.5	LOS A	3.9	29.0	0.58	0.52	0.58	45.0
11	T1	All MCs	427	6.0	427	6.0	0.494	5.7	LOS A	3.9	29.0	0.58	0.52	0.58	47.8
12	R2	All MCs	2	0.0	2	0.0	0.494	10.2	LOS A	3.9	29.0	0.58	0.52	0.58	44.3
Appro	bach		568	6.0	568	6.0	0.494	5.7	LOS A	3.9	29.0	0.58	0.52	0.58	47.2
All Ve	hicles		1603	4.9	1603	4.9	0.545	7.1	LOS A	4.8	35.0	0.62	0.57	0.62	44.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:18 PM

W Site: 101 [2024 BG PM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class			Fi [Total] veh/h	ows HV] %	Satn v/c	Delay sec	Service	Qu [Veh. veh	eue Dist] m	Que	Stop Rate	No. of Cycles	Speed km/h
South	n: Som	erset Pla	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.012	7.1	LOS A	0.1	0.5	0.73	0.62	0.73	41.3
2	T1	All MCs	2	0.0	2	0.0	0.012	7.1	LOS A	0.1	0.5	0.73	0.62	0.73	23.6
3	R2	All MCs	4	0.0	4	0.0	0.012	11.6	LOS A	0.1	0.5	0.73	0.62	0.73	38.1
Appro	bach		8	0.0	8	0.0	0.012	9.3	LOS A	0.1	0.5	0.73	0.62	0.73	35.5
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.488	5.2	LOS A	4.1	29.2	0.57	0.56	0.57	40.8
5	T1	All MCs	323	3.8	323	3.8	0.488	5.5	LOS A	4.1	29.2	0.57	0.56	0.57	47.1
6	R2	All MCs	257	1.1	257	1.1	0.488	10.1	LOS A	4.1	29.2	0.57	0.56	0.57	36.9
Appro	bach		583	2.6	583	2.6	0.488	7.5	LOS A	4.1	29.2	0.57	0.56	0.57	43.1
North	: Treel	ands Dr (N)												
7	L2	All MCs	298	1.5	298	1.5	0.525	7.6	LOS A	4.4	31.3	0.77	0.71	0.82	40.0
8	T1	All MCs	2	0.0	2	0.0	0.525	7.8	LOS A	4.4	31.3	0.77	0.71	0.82	32.9
9	R2	All MCs	187	3.2	187	3.2	0.525	12.5	LOS A	4.4	31.3	0.77	0.71	0.82	41.8
Appro	bach		487	2.1	487	2.1	0.525	9.5	LOS A	4.4	31.3	0.77	0.71	0.82	40.7
West	: Yamb	a Rd (W)													
10	L2	All MCs	169	6.4	169	6.4	0.536	6.0	LOS A	4.4	31.6	0.65	0.56	0.65	44.6
11	T1	All MCs	425	2.7	425	2.7	0.536	6.1	LOS A	4.4	31.6	0.65	0.56	0.65	47.9
12	R2	All MCs	1	0.0	1	0.0	0.536	10.7	LOS A	4.4	31.6	0.65	0.56	0.65	43.9
Appro	bach		596	3.7	596	3.7	0.536	6.1	LOS A	4.4	31.6	0.65	0.56	0.65	47.1
All Ve	hicles		1675	2.9	1675	2.9	0.536	7.6	LOS A	4.4	31.6	0.66	0.61	0.67	44.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:18 PM

🐺 Site: 101 [2034 BG AM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class		lows	Fl [Total	lows	Satn	Delay	Service	Qu [Veh.	eue	Que	Stop Rate	No. of	Speed
			veh/h		veh/h	⊓vj %	v/c	sec		ven.	Dist] m		Rate	Cycles	km/h
South	n: Som	erset Pla	ce (S)												
1	L2	All MCs	3	0.0	3	0.0	0.020	9.7	LOS A	0.1	1.0	0.86	0.70	0.86	38.5
2	T1	All MCs	1	0.0	1	0.0	0.020	9.7	LOS A	0.1	1.0	0.86	0.70	0.86	21.9
3	R2	All MCs	6	0.0	6	0.0	0.020	14.2	LOS A	0.1	1.0	0.86	0.70	0.86	35.2
Appro	bach		11	0.0	11	0.0	0.020	12.4	LOS A	0.1	1.0	0.86	0.70	0.86	35.0
East:	Yamba	a Rd (E)													
4	L2	All MCs	5	0.0	5	0.0	0.661	6.1	LOS A	7.0	51.1	0.75	0.61	0.76	40.1
5	T1	All MCs	509	6.4	509	6.4	0.661	6.5	LOS A	7.0	51.1	0.75	0.61	0.76	46.5
6	R2	All MCs	242	0.7	242	0.7	0.661	11.0	LOS A	7.0	51.1	0.75	0.61	0.76	36.3
Appro	bach		757	4.5	757	4.5	0.661	7.9	LOS A	7.0	51.1	0.75	0.61	0.76	43.6
North	: Treel	ands Dr (N)												
7	L2	All MCs	225	4.0	225	4.0	0.534	8.8	LOS A	4.6	33.5	0.83	0.77	0.93	37.9
8	T1	All MCs	3	0.0	3	0.0	0.534	8.8	LOS A	4.6	33.5	0.83	0.77	0.93	31.1
9	R2	All MCs	217	4.0	217	4.0	0.534	13.6	LOS A	4.6	33.5	0.83	0.77	0.93	40.1
Appro	bach		445	4.0	445	4.0	0.534	11.1	LOS A	4.6	33.5	0.83	0.77	0.93	39.0
West	: Yamb	a Rd (W)													
10	L2	All MCs	165	6.4	165	6.4	0.600	6.1	LOS A	5.5	39.6	0.70	0.57	0.70	44.2
11	T1	All MCs	505	2.7	505	2.7	0.600	6.2	LOS A	5.5	39.6	0.70	0.57	0.70	47.6
12	R2	All MCs	3	0.0	3	0.0	0.600	10.7	LOS A	5.5	39.6	0.70	0.57	0.70	43.5
Appro	bach		674	3.6	674	3.6	0.600	6.2	LOS A	5.5	39.6	0.70	0.57	0.70	46.8
All Ve	hicles		1886	4.0	1886	4.0	0.661	8.1	LOS A	7.0	51.1	0.75	0.63	0.78	43.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:19 PM

W Site: 101 [2034 BG PM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov	Turn	Mov		nand		rival	Deg.	Aver.	Level of		ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class			FI [Total] veh/h	ows HV] %	Satn v/c	Delay sec	Service	Qu [Veh. veh	eue Dist] m	Que	Stop Rate	No. of Cycles	Speed km/h
South	n: Som	erset Pla	ce (S)												
1	L2	All MCs	3	0.0	3	0.0	0.020	8.7	LOS A	0.1	0.9	0.82	0.68	0.82	39.9
2	T1	All MCs	3	0.0	3	0.0	0.020	8.7	LOS A	0.1	0.9	0.82	0.68	0.82	22.7
3	R2	All MCs	5	0.0	5	0.0	0.020	13.2	LOS A	0.1	0.9	0.82	0.68	0.82	36.7
Appro	bach		12	0.0	12	0.0	0.020	10.7	LOS A	0.1	0.9	0.82	0.68	0.82	34.0
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.600	5.7	LOS A	5.7	41.0	0.71	0.60	0.71	40.1
5	T1	All MCs	378	3.8	378	3.8	0.600	6.0	LOS A	5.7	41.0	0.71	0.60	0.71	46.5
6	R2	All MCs	304	1.1	304	1.1	0.600	10.6	LOS A	5.7	41.0	0.71	0.60	0.71	36.2
Appro	bach		685	2.6	685	2.6	0.600	8.0	LOS A	5.7	41.0	0.71	0.60	0.71	42.4
North	: Treel	ands Dr ((N)												
7	L2	All MCs	346	1.5	346	1.5	0.677	10.9	LOS A	7.8	55.3	0.92	0.85	1.17	36.4
8	T1	All MCs	3	0.0	3	0.0	0.677	11.1	LOS A	7.8	55.3	0.92	0.85	1.17	29.0
9	R2	All MCs	224	3.2	224	3.2	0.677	15.9	LOS B	7.8	55.3	0.92	0.85	1.17	38.5
Appro	bach		574	2.2	574	2.2	0.677	12.9	LOS A	7.8	55.3	0.92	0.85	1.17	37.2
West	: Yamb	a Rd (W))												
10	L2	All MCs	203	6.4	203	6.4	0.664	7.9	LOS A	7.3	52.7	0.80	0.68	0.89	43.4
11	T1	All MCs	494	2.7	494	2.7	0.664	8.0	LOS A	7.3	52.7	0.80	0.68	0.89	46.9
12	R2	All MCs	1	2.0	1	2.0	0.664	12.6	LOS A	7.3	52.7	0.80	0.68	0.89	42.7
Appro	bach		698	3.8	698	3.8	0.664	8.0	LOS A	7.3	52.7	0.80	0.68	0.89	46.0
All Ve	hicles		1968	2.9	1968	2.9	0.677	9.4	LOS A	7.8	55.3	0.80	0.70	0.91	42.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:20 PM

W Site: 101 [2024 DES AM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class		lows	Fl [Total]	lows	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of	Speed
			veh/h		veh/h	⊓vj %	v/c	sec		ven.	m Dist j		Rate	Cycles	km/h
South	: Som	erset Pla	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.013	8.1	LOS A	0.1	0.6	0.79	0.66	0.79	39.8
2	T1	All MCs	1	0.0	1	0.0	0.013	8.1	LOS A	0.1	0.6	0.79	0.66	0.79	22.8
3	R2	All MCs	5	0.0	5	0.0	0.013	12.6	LOS A	0.1	0.6	0.79	0.66	0.79	36.6
Appro	bach		8	0.0	8	0.0	0.013	10.9	LOS A	0.1	0.6	0.79	0.66	0.79	35.8
East:	Yamba	a Rd (E)													
4	L2	All MCs	4	0.0	4	0.0	0.566	5.3	LOS A	5.1	37.3	0.61	0.56	0.61	41.0
5	T1	All MCs	456	6.4	456	6.4	0.566	5.7	LOS A	5.1	37.3	0.61	0.56	0.61	47.2
6	R2	All MCs	217	0.7	217	0.7	0.566	10.2	LOS A	5.1	37.3	0.61	0.56	0.61	37.0
Appro	bach		677	4.5	677	4.5	0.566	7.1	LOS A	5.1	37.3	0.61	0.56	0.61	44.3
North	: Treel	ands Dr (N)												
7	L2	All MCs	193	4.0	193	4.0	0.418	7.0	LOS A	2.9	21.3	0.72	0.68	0.72	39.9
8	T1	All MCs	3	0.0	3	0.0	0.418	7.1	LOS A	2.9	21.3	0.72	0.68	0.72	33.4
9	R2	All MCs	182	4.0	182	4.0	0.418	11.8	LOS A	2.9	21.3	0.72	0.68	0.72	42.0
Appro	bach		378	4.0	378	4.0	0.418	9.3	LOS A	2.9	21.3	0.72	0.68	0.72	40.9
West	Yamb	a Rd (W)													
10	L2	All MCs	139	6.1	139	6.1	0.504	5.6	LOS A	4.0	29.8	0.60	0.53	0.60	44.9
11	T1	All MCs	433	6.0	433	6.0	0.504	5.8	LOS A	4.0	29.8	0.60	0.53	0.60	47.7
12	R2	All MCs	2	0.0	2	0.0	0.504	10.3	LOS A	4.0	29.8	0.60	0.53	0.60	44.2
Appro	bach		574	6.0	574	6.0	0.504	5.8	LOS A	4.0	29.8	0.60	0.53	0.60	47.1
All Ve	hicles		1637	4.9	1637	4.9	0.566	7.2	LOS A	5.1	37.3	0.63	0.58	0.63	44.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:20 PM

W Site: 101 [2024 DES PM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		Back Of	Prop.	Eff.	Aver.	Aver.
ID		Class		lows HV/1	FI Total	lows H\/ 1	Satn	Delay	Service	Qu [Veh.	eue Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m		11010		km/h
South	n: Som	erset Pla	ce (S)												
1	L2	All MCs	2	0.0	2	0.0	0.012	7.3	LOS A	0.1	0.5	0.73	0.63	0.73	41.2
2	T1	All MCs	2	0.0	2	0.0	0.012	7.2	LOS A	0.1	0.5	0.73	0.63	0.73	23.6
3	R2	All MCs	4	0.0	4	0.0	0.012	11.7	LOS A	0.1	0.5	0.73	0.63	0.73	38.0
Appro	bach		8	0.0	8	0.0	0.012	9.5	LOS A	0.1	0.5	0.73	0.63	0.73	35.4
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.500	5.2	LOS A	4.2	30.4	0.58	0.56	0.58	40.8
5	T1	All MCs	331	3.8	331	3.8	0.500	5.5	LOS A	4.2	30.4	0.58	0.56	0.58	47.1
6	R2	All MCs	263	1.1	263	1.1	0.500	10.1	LOS A	4.2	30.4	0.58	0.56	0.58	36.8
Appro	bach		597	2.6	597	2.6	0.500	7.5	LOS A	4.2	30.4	0.58	0.56	0.58	43.1
North	: Treel	ands Dr (N)												
7	L2	All MCs	307	1.5	307	1.5	0.545	8.0	LOS A	4.8	33.9	0.79	0.73	0.87	39.6
8	T1	All MCs	2	0.0	2	0.0	0.545	8.2	LOS A	4.8	33.9	0.79	0.73	0.87	32.4
9	R2	All MCs	187	3.2	187	3.2	0.545	12.9	LOS A	4.8	33.9	0.79	0.73	0.87	41.4
Appro	bach		497	2.1	497	2.1	0.545	9.8	LOS A	4.8	33.9	0.79	0.73	0.87	40.3
West	Yamb	a Rd (W)													
10	L2	All MCs	169	6.4	169	6.4	0.553	6.1	LOS A	4.6	33.1	0.67	0.57	0.67	44.4
11	T1	All MCs	439	2.7	439	2.7	0.553	6.2	LOS A	4.6	33.1	0.67	0.57	0.67	47.8
12	R2	All MCs	1	0.0	1	0.0	0.553	10.7	LOS A	4.6	33.1	0.67	0.57	0.67	43.8
Appro	bach		609	3.7	609	3.7	0.553	6.2	LOS A	4.6	33.1	0.67	0.57	0.67	47.0
All Ve	hicles		1712	2.8	1712	2.8	0.553	7.7	LOS A	4.8	33.9	0.67	0.62	0.69	43.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:21 PM

W Site: 101 [2034 DES AM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov	Turn	Mov	Dem			rival	Deg.	Aver.	Level of		ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class			Fl [Total] veh/h	lows HV] %	Satn v/c	Delay sec	Service	Qu [Veh. veh	eue Dist] m	Que	Stop Rate	No. of Cycles	Speed km/h
South	: Som	erset Pla		70	VCII/II	70	V/C	300		<u>ven</u>					KI17/11
1	L2	All MCs	3	0.0	3	0.0	0.021	10.1	LOS A	0.1	1.0	0.88	0.71	0.88	38.1
2	T1	All MCs	1	0.0	1	0.0	0.021	10.1	LOS A	0.1	1.0	0.88	0.71	0.88	21.6
3	R2	All MCs	6	0.0	6	0.0	0.021	14.6	LOS B	0.1	1.0	0.88	0.71	0.88	34.9
Appro	bach		11	0.0	11	0.0	0.021	12.8	LOS A	0.1	1.0	0.88	0.71	0.88	34.6
East:	Yamba	a Rd (E)													
4	L2	All MCs	5	0.0	5	0.0	0.682	6.3	LOS A	7.7	55.9	0.77	0.62	0.80	39.9
5	T1	All MCs	526	6.4	526	6.4	0.682	6.8	LOS A	7.7	55.9	0.77	0.62	0.80	46.3
6	R2	All MCs	249	0.7	249	0.7	0.682	11.2	LOS A	7.7	55.9	0.77	0.62	0.80	36.1
Appro	bach		781	4.5	781	4.5	0.682	8.2	LOS A	7.7	55.9	0.77	0.62	0.80	43.5
North	: Treel	ands Dr (N)												
7	L2	All MCs	227	4.0	227	4.0	0.546	9.1	LOS A	4.9	35.2	0.85	0.78	0.96	37.5
8	T1	All MCs	3	0.0	3	0.0	0.546	9.2	LOS A	4.9	35.2	0.85	0.78	0.96	30.7
9	R2	All MCs	217	4.0	217	4.0	0.546	14.0	LOS A	4.9	35.2	0.85	0.78	0.96	39.8
Appro	bach		447	4.0	447	4.0	0.546	11.5	LOS A	4.9	35.2	0.85	0.78	0.96	38.7
West	Yamb	a Rd (W)													
10	L2	All MCs	165	6.1	165	6.1	0.620	6.4	LOS A	6.0	44.2	0.73	0.60	0.75	44.0
11	T1	All MCs	511	6.0	511	6.0	0.620	6.6	LOS A	6.0	44.2	0.73	0.60	0.75	46.9
12	R2	All MCs	3	0.0	3	0.0	0.620	11.1	LOS A	6.0	44.2	0.73	0.60	0.75	43.4
Appro	bach		679	6.0	679	6.0	0.620	6.6	LOS A	6.0	44.2	0.73	0.60	0.75	46.3
All Ve	hicles		1918	4.9	1918	4.9	0.682	8.4	LOS A	7.7	55.9	0.77	0.65	0.82	43.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:22 PM

W Site: 101 [2034 DES PM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Treelands Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	t Perfo	rma	nce										
Mov	Turn	Mov		nand		rival	Deg.	Aver.	Level of		ack Of	Prop.	Eff.	Aver.	Aver.
ID		Class			Fi [Total] veh/h	ows HV] %	Satn v/c	Delay sec	Service	Qu [Veh. veh	eue Dist] m	Que	Stop Rate	No. of Cycles	Speed km/h
South	n: Som	erset Pla	ce (S)												
1	L2	All MCs	3	0.0	3	0.0	0.020	8.9	LOS A	0.1	0.9	0.83	0.68	0.83	39.8
2	T1	All MCs	3	0.0	3	0.0	0.020	8.8	LOS A	0.1	0.9	0.83	0.68	0.83	22.6
3	R2	All MCs	5	0.0	5	0.0	0.020	13.3	LOS A	0.1	0.9	0.83	0.68	0.83	36.5
Appro	bach		12	0.0	12	0.0	0.020	10.9	LOS A	0.1	0.9	0.83	0.68	0.83	33.8
East:	Yamba	a Rd (E)													
4	L2	All MCs	3	0.0	3	0.0	0.610	5.7	LOS A	5.9	42.4	0.72	0.60	0.72	40.0
5	T1	All MCs	385	3.8	385	3.8	0.610	6.0	LOS A	5.9	42.4	0.72	0.60	0.72	46.4
6	R2	All MCs	307	1.1	307	1.1	0.610	10.6	LOS A	5.9	42.4	0.72	0.60	0.72	36.2
Appro	bach		696	2.6	696	2.6	0.610	8.1	LOS A	5.9	42.4	0.72	0.60	0.72	42.4
North	: Treel	ands Dr ((N)												
7	L2	All MCs	356	1.5	356	1.5	0.699	11.7	LOS A	8.4	59.9	0.95	0.88	1.23	35.7
8	T1	All MCs	3	0.0	3	0.0	0.699	11.9	LOS A	8.4	59.9	0.95	0.88	1.23	28.3
9	R2	All MCs	224	3.2	224	3.2	0.699	16.6	LOS B	8.4	59.9	0.95	0.88	1.23	37.8
Appro	bach		583	2.1	583	2.1	0.699	13.6	LOS A	8.4	59.9	0.95	0.88	1.23	36.5
West	: Yamb	a Rd (W))												
10	L2	All MCs	203	6.4	203	6.4	0.679	8.2	LOS A	7.7	56.0	0.82	0.69	0.92	43.2
11	T1	All MCs	507	2.7	507	2.7	0.679	8.3	LOS A	7.7	56.0	0.82	0.69	0.92	46.7
12	R2	All MCs	1	0.0	1	0.0	0.679	12.8	LOS A	7.7	56.0	0.82	0.69	0.92	42.6
Appro	bach		712	3.8	712	3.8	0.679	8.2	LOS A	7.7	56.0	0.82	0.69	0.92	45.9
All Ve	hicles		2002	2.9	2002	2.9	0.699	9.8	LOS A	8.4	59.9	0.82	0.72	0.94	42.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:02:22 PM

SITE LAYOUT V Site: 101 [2024 BG AM (Site Folder: General)]

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Created: Sunday, 3 September 2023 1:36:42 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

V Site: 101 [2024 BG AM (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perform	nance											
Mov ID	Turn	Mov Class	Dema Flo [Total H veh/h	WS		WS	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)												
1	L2	All MCs	149 10).8 1	49 10	0.8	0.471	7.3	LOS A	3.3	24.7	0.71	0.70	0.72	37.9
3	R2	All MCs	291 4	1.2 2	91 4	4.2	0.471	12.0	LOS A	3.3	24.7	0.71	0.70	0.72	42.8
Appro	ach		440 6	6.4 4	40 (6.4	0.471	10.4	LOS A	3.3	24.7	0.71	0.70	0.72	41.3
East:	Yamba	a Rd (E)													
4	L2	All MCs	120 <i>°</i>	1.5 1	20	1.5	0.395	4.4	LOS A	3.1	22.6	0.34	0.42	0.34	48.3
5	T1	All MCs	425 4	4.3 4	25 4	4.3	0.395	4.7	LOS A	3.1	22.6	0.34	0.42	0.34	50.4
Appro	ach		545 3	3.7 5	45 3	3.7	0.395	4.6	LOS A	3.1	22.6	0.34	0.42	0.34	50.0
West:	Yamb	a Rd (W)													
11	T1	All MCs	456 4	4.8 4	56 4	4.8	0.512	6.3	LOS A	4.1	30.3	0.68	0.59	0.68	48.3
12	R2	All MCs	79 14	4.0	79 14	4.0	0.512	11.3	LOS A	4.1	30.3	0.68	0.59	0.68	40.3
Appro	ach		535 6	6.2 5	35 (6.2	0.512	7.1	LOS A	4.1	30.3	0.68	0.59	0.68	47.5
All Ve	hicles		1520 క	5.4 15	20 !	5.4	0.512	7.1	LOS A	4.1	30.3	0.57	0.56	0.57	46.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:30 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

V Site: 101 [2024 BG PM (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	5)												
1	L2	All MCs	116	8.2	116	8.2	0.257	6.5	LOS A	1.6	11.6	0.62	0.66	0.62	39.6
3	R2	All MCs	125	1.9	125	1.9	0.257	11.2	LOS A	1.6	11.6	0.62	0.66	0.62	44.2
Appro	ach		241	4.9	241	4.9	0.257	8.9	LOS A	1.6	11.6	0.62	0.66	0.62	42.2
East: `	Yamba	a Rd (E)													
4	L2	All MCs	243	4.3	243	4.3	0.512	5.0	LOS A	4.3	30.8	0.48	0.47	0.48	47.4
5	T1	All MCs	421	3.1	421	3.1	0.512	5.2	LOS A	4.3	30.8	0.48	0.47	0.48	49.9
Appro	ach		664	3.5	664	3.5	0.512	5.1	LOS A	4.3	30.8	0.48	0.47	0.48	49.1
West:	Yamb	a Rd (W)													
11	T1	All MCs	460	1.4	460	1.4	0.454	4.9	LOS A	3.7	26.3	0.44	0.49	0.44	49.5
12	R2	All MCs	138	3.8	138	3.8	0.454	9.6	LOS A	3.7	26.3	0.44	0.49	0.44	42.1
Appro	ach		598	2.0	598	2.0	0.454	6.0	LOS A	3.7	26.3	0.44	0.49	0.44	48.3
All Ve	hicles		1503	3.1	1503	3.1	0.512	6.1	LOS A	4.3	30.8	0.48	0.51	0.48	47.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:31 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

V Site: 101 [2034 BG AM (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perform	ance										
Mov ID	Turn	Mov Class	Deman Flow [Total HV veh/h	s F		Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	5)											
1	L2	All MCs	157 10.	8 157	10.8	0.535	9.1	LOS A	4.5	33.3	0.79	0.77	0.90	36.1
3	R2	All MCs	306 4.	2 306	4.2	0.535	13.7	LOS A	4.5	33.3	0.79	0.77	0.90	41.1
Appro	ach		463 6.	4 463	6.4	0.535	12.2	LOS A	4.5	33.3	0.79	0.77	0.90	39.7
East:	Yamba	a Rd (E)												
4	L2	All MCs	134 1.	5 134	1.5	0.470	4.5	LOS A	4.2	30.0	0.41	0.43	0.41	47.8
5	T1	All MCs	508 4.	3 508	4.3	0.470	4.8	LOS A	4.2	30.0	0.41	0.43	0.41	50.0
Appro	ach		642 3.	7 642	3.7	0.470	4.7	LOS A	4.2	30.0	0.41	0.43	0.41	49.6
West:	Yamb	a Rd (W)												
11	T1	All MCs	544 4.	8 544	4.8	0.614	7.4	LOS A	6.1	44.8	0.77	0.65	0.83	47.8
12	R2	All MCs	88 14.	0 88	14.0	0.614	12.4	LOS A	6.1	44.8	0.77	0.65	0.83	39.6
Appro	ach		633 6.	1 633	6.1	0.614	8.1	LOS A	6.1	44.8	0.77	0.65	0.83	47.0
All Ve	hicles		1738 5.	3 1738	5.3	0.614	7.9	LOS A	6.1	44.8	0.64	0.60	0.69	46.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:31 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

W Site: 101 [2034 BG PM (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)												
1	L2	All MCs	126	8.2	126	8.2	0.306	7.2	LOS A	2.0	14.5	0.70	0.69	0.70	38.8
3	R2	All MCs	137	1.9	137	1.9	0.306	11.9	LOS A	2.0	14.5	0.70	0.69	0.70	43.5
Appro	ach		263	4.9	263	4.9	0.306	9.6	LOS A	2.0	14.5	0.70	0.69	0.70	41.5
East: `	Yamba	a Rd (E)													
4	L2	All MCs	254	4.3	254	4.3	0.585	5.1	LOS A	5.5	39.5	0.54	0.49	0.54	47.0
5	T1	All MCs	503	3.1	503	3.1	0.585	5.3	LOS A	5.5	39.5	0.54	0.49	0.54	49.5
Appro	ach		757	3.5	757	3.5	0.585	5.3	LOS A	5.5	39.5	0.54	0.49	0.54	48.8
West:	Yamb	a Rd (W)													
11	T1	All MCs	549	1.4	549	1.4	0.532	5.1	LOS A	4.8	34.4	0.51	0.50	0.51	49.2
12	R2	All MCs	143	3.8	143	3.8	0.532	9.8	LOS A	4.8	34.4	0.51	0.50	0.51	41.7
Appro	ach		693	1.9	693	1.9	0.532	6.1	LOS A	4.8	34.4	0.51	0.50	0.51	48.1
All Ve	hicles		1713	3.1	1713	3.1	0.585	6.3	LOS A	5.5	39.5	0.55	0.52	0.55	47.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:32 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

₩ Site: 101 [2024 DES AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %		ows Sat	n Delay	Level of Service		Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)										
1	L2	All MCs	175 10.8	175 1	0.8 0.55	2 8.3	LOS A	4.7	34.6	0.76	0.74	0.84	36.9
3	R2	All MCs	340 4.2	340	4.2 0.55	2 12.9	LOS A	4.7	34.6	0.76	0.74	0.84	41.9
Appro	ach		515 6.4	515	6.4 0.55	2 11.4	LOS A	4.7	34.6	0.76	0.74	0.84	40.4
East:	Yamba	a Rd (E)											
4	L2	All MCs	132 1.5	132	1.5 0.41	0 4.5	LOS A	3.3	24.1	0.37	0.43	0.37	48.1
5	T1	All MCs	425 4.3	425	4.3 0.41	0 4.7	LOS A	3.3	24.1	0.37	0.43	0.37	50.2
Appro	ach		557 3.6	557	3.6 0.41	0 4.7	LOS A	3.3	24.1	0.37	0.43	0.37	49.8
West:	Yamb	a Rd (W)											
11	T1	All MCs	456 4.8	456	4.8 0.55	1 7.2	LOS A	4.8	35.3	0.75	0.65	0.78	47.9
12	R2	All MCs	87 14.0	87 1	4.0 0.55	1 12.2	LOS A	4.8	35.3	0.75	0.65	0.78	39.7
Appro	ach		543 6.3	543	6.3 0.55	1 8.0	LOS A	4.8	35.3	0.75	0.65	0.78	46.9
All Ve	hicles		1615 5.4	1615	5.4 0.55	2 7.9	LOS A	4.8	35.3	0.62	0.60	0.66	46.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:32 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

W Site: 101 [2024 DES PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)												
1	L2	All MCs	129	8.2	129	8.2	0.290	6.6	LOS A	1.9	13.5	0.64	0.66	0.64	39.5
3	R2	All MCs	140	1.9	140	1.9	0.290	11.3	LOS A	1.9	13.5	0.64	0.66	0.64	44.1
Appro	ach		269	4.9	269	4.9	0.290	9.0	LOS A	1.9	13.5	0.64	0.66	0.64	42.1
East: `	Yamba	a Rd (E)													
4	L2	All MCs	284	4.3	284	4.3	0.559	5.2	LOS A	4.9	35.5	0.55	0.50	0.55	47.0
5	T1	All MCs	421	3.1	421	3.1	0.559	5.4	LOS A	4.9	35.5	0.55	0.50	0.55	49.6
Appro	ach		705	3.6	705	3.6	0.559	5.3	LOS A	4.9	35.5	0.55	0.50	0.55	48.6
West:	Yamb	a Rd (W)													
11	T1	All MCs	460	1.4	460	1.4	0.480	5.1	LOS A	4.0	28.7	0.48	0.50	0.48	49.2
12	R2	All MCs	161	3.8	161	3.8	0.480	9.8	LOS A	4.0	28.7	0.48	0.50	0.48	41.7
Appro	ach		621	2.0	621	2.0	0.480	6.3	LOS A	4.0	28.7	0.48	0.50	0.48	47.8
All Ve	hicles		1596	3.2	1596	3.2	0.559	6.3	LOS A	4.9	35.5	0.54	0.53	0.54	47.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:33 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

W Site: 101 [2034 DES AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perform	ance										
Mov ID	Turn	Mov Class	Demar Flov [Total H\ veh/h	/s F		Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)											
1	L2	All MCs	182 10	.8 182	10.8	0.626	10.7	LOS A	6.3	46.5	0.85	0.83	1.06	34.8
3	R2	All MCs	355 4	.2 355	4.2	0.626	15.2	LOS B	6.3	46.5	0.85	0.83	1.06	39.9
Appro	ach		537 6	.4 537	6.4	0.626	13.7	LOS A	6.3	46.5	0.85	0.83	1.06	38.3
East:	Yamba	a Rd (E)												
4	L2	All MCs	145 1	.5 145	1.5	0.486	4.6	LOS A	4.4	32.0	0.44	0.44	0.44	47.6
5	T1	All MCs	508 4	.3 508	4.3	0.486	4.9	LOS A	4.4	32.0	0.44	0.44	0.44	49.8
Appro	ach		654 3	.7 654	3.7	0.486	4.8	LOS A	4.4	32.0	0.44	0.44	0.44	49.4
West:	Yamb	a Rd (W)												
11	T1	All MCs	544 4	.8 544	4.8	0.663	8.8	LOS A	7.4	54.6	0.85	0.73	0.98	47.2
12	R2	All MCs	96 14	.0 96	14.0	0.663	13.9	LOS A	7.4	54.6	0.85	0.73	0.98	38.9
Appro	ach		640 6	.2 640	6.2	0.663	9.6	LOS A	7.4	54.6	0.85	0.73	0.98	46.3
All Ve	hicles		1831 5	.4 1831	5.4	0.663	9.1	LOS A	7.4	54.6	0.70	0.66	0.81	45.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:33 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9
W Site: 101 [2034 DES PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)												
1	L2	All MCs	140	8.2	140	8.2	0.343	7.3	LOS A	2.3	16.9	0.72	0.70	0.72	38.8
3	R2	All MCs	152	1.9	152	1.9	0.343	11.9	LOS A	2.3	16.9	0.72	0.70	0.72	43.4
Appro	ach		292	4.9	292	4.9	0.343	9.7	LOS A	2.3	16.9	0.72	0.70	0.72	41.4
East: `	Yamba	a Rd (E)													
4	L2	All MCs	295	4.3	295	4.3	0.635	5.4	LOS A	6.3	45.6	0.62	0.52	0.62	46.5
5	T1	All MCs	503	3.1	503	3.1	0.635	5.6	LOS A	6.3	45.6	0.62	0.52	0.62	49.1
Appro	ach		798	3.5	798	3.5	0.635	5.6	LOS A	6.3	45.6	0.62	0.52	0.62	48.3
West:	Yamb	a Rd (W)													
11	T1	All MCs	549	1.4	549	1.4	0.560	5.3	LOS A	5.3	37.4	0.56	0.52	0.56	48.9
12	R2	All MCs	166	3.8	166	3.8	0.560	10.0	LOS A	5.3	37.4	0.56	0.52	0.56	41.3
Appro	ach		716	2.0	716	2.0	0.560	6.4	LOS A	5.3	37.4	0.56	0.52	0.56	47.6
All Ve	hicles		1805	3.1	1805	3.1	0.635	6.5	LOS A	6.3	45.6	0.61	0.55	0.61	47.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:34 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

🐺 Site: 101 [2024 BG AM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perforn	nance										
Mov ID	Turn	Mov Class				Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)											
1	L2	All MCs	166 10	.8 166	10.8	0.548	8.9	LOS A	4.7	34.5	0.78	0.76	0.88	36.4
3	R2	All MCs	323 4	.2 323	4.2	0.548	13.5	LOS A	4.7	34.5	0.78	0.76	0.88	41.4
Appro	ach		489 6	.4 489	6.4	0.548	11.9	LOS A	4.7	34.5	0.78	0.76	0.88	39.9
East:	Yamba	a Rd (E)												
4	L2	All MCs	133 1	.5 133	1.5	0.444	4.5	LOS A	3.8	27.3	0.39	0.43	0.39	47.9
5	T1	All MCs	472 4	.3 472	4.3	0.444	4.8	LOS A	3.8	27.3	0.39	0.43	0.39	50.1
Appro	ach		604 3	.7 604	3.7	0.444	4.7	LOS A	3.8	27.3	0.39	0.43	0.39	49.7
West:	Yamb	a Rd (W)												
11	T1	All MCs	505 4	.8 505	4.8	0.589	7.3	LOS A	5.5	40.8	0.77	0.65	0.81	47.8
12	R2	All MCs	88 14	.0 88	14.0	0.589	12.3	LOS A	5.5	40.8	0.77	0.65	0.81	39.6
Appro	ach		594 6	.2 594	6.2	0.589	8.1	LOS A	5.5	40.8	0.77	0.65	0.81	46.9
All Ve	hicles		1687 5	.4 1687	5.4	0.589	8.0	LOS A	5.5	40.8	0.64	0.61	0.68	46.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:35 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

W Site: 101 [2024 BG PM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)												
1	L2	All MCs	128	8.2	128	8.2	0.301	6.9	LOS A	1.9	14.2	0.67	0.68	0.67	39.1
3	R2	All MCs	139	1.9	139	1.9	0.301	11.6	LOS A	1.9	14.2	0.67	0.68	0.67	43.7
Appro	ach		267	4.9	267	4.9	0.301	9.4	LOS A	1.9	14.2	0.67	0.68	0.67	41.8
East:	Yamba	a Rd (E)													
4	L2	All MCs	271	4.3	271	4.3	0.578	5.2	LOS A	5.3	38.2	0.55	0.50	0.55	46.9
5	T1	All MCs	467	3.1	467	3.1	0.578	5.4	LOS A	5.3	38.2	0.55	0.50	0.55	49.5
Appro	ach		738	3.5	738	3.5	0.578	5.3	LOS A	5.3	38.2	0.55	0.50	0.55	48.7
West:	Yamb	a Rd (W)													
11	T1	All MCs	511	1.4	511	1.4	0.512	5.1	LOS A	4.5	32.0	0.50	0.50	0.50	49.2
12	R2	All MCs	153	3.8	153	3.8	0.512	9.8	LOS A	4.5	32.0	0.50	0.50	0.50	41.7
Appro	ach		663	2.0	663	2.0	0.512	6.2	LOS A	4.5	32.0	0.50	0.50	0.50	47.9
All Ve	hicles		1668	3.1	1668	3.1	0.578	6.3	LOS A	5.3	38.2	0.55	0.53	0.55	47.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:35 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

🐺 Site: 101 [2034 BG AM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perform	ance										
Mov ID	Turn	Mov Class	Deman Flow [Total HV veh/h	s F	rrival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	S)											
1	L2	All MCs	175 10.	8 175	10.8	0.635	11.7	LOS A	6.5	48.3	0.89	0.87	1.13	33.9
3	R2	All MCs	340 4.	2 340	4.2	0.635	16.3	LOS B	6.5	48.3	0.89	0.87	1.13	39.0
Appro	ach		515 6.	4 515	6.4	0.635	14.7	LOS B	6.5	48.3	0.89	0.87	1.13	37.5
East:	Yamba	a Rd (E)												
4	L2	All MCs	148 1.	5 148	1.5	0.530	4.6	LOS A	5.2	37.3	0.47	0.44	0.47	47.4
5	T1	All MCs	564 4.	3 564	4.3	0.530	4.9	LOS A	5.2	37.3	0.47	0.44	0.47	49.6
Appro	ach		713 3.	7 713	3.7	0.530	4.9	LOS A	5.2	37.3	0.47	0.44	0.47	49.2
West:	Yamb	a Rd (W)												
11	T1	All MCs	604 4.	8 604	4.8	0.713	9.5	LOS A	9.0	66.1	0.89	0.76	1.06	46.9
12	R2	All MCs	98 14.	0 98	14.0	0.713	14.5	LOS B	9.0	66.1	0.89	0.76	1.06	38.6
Appro	ach		702 6.	1 702	6.1	0.713	10.2	LOS A	9.0	66.1	0.89	0.76	1.06	46.1
All Ve	hicles		1929 5.	3 1929	5.3	0.713	9.4	LOS A	9.0	66.1	0.74	0.67	0.86	45.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:36 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

W Site: 101 [2034 BG PM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)												
1	L2	All MCs	140	8.2	140	8.2	0.362	7.8	LOS A	2.5	18.2	0.76	0.71	0.76	38.2
3	R2	All MCs	152	1.9	152	1.9	0.362	12.4	LOS A	2.5	18.2	0.76	0.71	0.76	42.9
Appro	ach		292	4.9	292	4.9	0.362	10.2	LOS A	2.5	18.2	0.76	0.71	0.76	40.9
East:	Yamba	a Rd (E)													
4	L2	All MCs	281	4.3	281	4.3	0.661	5.4	LOS A	6.9	50.1	0.64	0.52	0.64	46.4
5	T1	All MCs	558	3.1	558	3.1	0.661	5.6	LOS A	6.9	50.1	0.64	0.52	0.64	49.0
Appro	ach		839	3.5	839	3.5	0.661	5.6	LOS A	6.9	50.1	0.64	0.52	0.64	48.2
West:	Yamb	a Rd (W)													
11	T1	All MCs	611	1.4	611	1.4	0.601	5.4	LOS A	6.0	42.8	0.59	0.52	0.59	48.8
12	R2	All MCs	159	3.8	159	3.8	0.601	10.0	LOS A	6.0	42.8	0.59	0.52	0.59	41.1
Appro	ach		769	1.9	769	1.9	0.601	6.3	LOS A	6.0	42.8	0.59	0.52	0.59	47.7
All Ve	hicles		1900	3.1	1900	3.1	0.661	6.6	LOS A	6.9	50.1	0.64	0.55	0.64	47.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:36 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

W Site: 101 [2024 DES AM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Performa	ince										
Mov ID	Turn	Mov Class	Demano Flows [Total HV] veh/h %	F	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carr	s Drive (S	S)											
1	L2	All MCs	191 10.8	191	10.8	0.633	10.2	LOS A	6.4	47.4	0.84	0.82	1.03	35.1
3	R2	All MCs	372 4.2	372	4.2	0.633	14.8	LOS B	6.4	47.4	0.84	0.82	1.03	40.2
Appro	ach		562 6.4	562	6.4	0.633	13.3	LOS A	6.4	47.4	0.84	0.82	1.03	38.7
East:	Yamba	a Rd (E)												
4	L2	All MCs	144 1.5	144	1.5	0.459	4.6	LOS A	4.0	29.1	0.42	0.44	0.42	47.8
5	T1	All MCs	472 4.3	472	4.3	0.459	4.8	LOS A	4.0	29.1	0.42	0.44	0.42	49.9
Appro	ach		616 3.6	616	3.6	0.459	4.8	LOS A	4.0	29.1	0.42	0.44	0.42	49.5
West:	Yamb	a Rd (W)												
11	T1	All MCs	505 4.8	505	4.8	0.636	8.7	LOS A	6.7	49.4	0.84	0.73	0.96	47.2
12	R2	All MCs	96 14.0	96	14.0	0.636	13.7	LOS A	6.7	49.4	0.84	0.73	0.96	39.0
Appro	ach		601 6.3	601	6.3	0.636	9.5	LOS A	6.7	49.4	0.84	0.73	0.96	46.3
All Ve	hicles		1779 5.4	1779	5.4	0.636	9.1	LOS A	6.7	49.4	0.70	0.66	0.79	45.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:37 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

W Site: 101 [2024 DES PM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)												
1	L2	All MCs	142	8.2	142	8.2	0.336	7.0	LOS A	2.3	16.4	0.70	0.68	0.70	39.1
3	R2	All MCs	154	1.9	154	1.9	0.336	11.7	LOS A	2.3	16.4	0.70	0.68	0.70	43.7
Appro	ach		296	4.9	296	4.9	0.336	9.4	LOS A	2.3	16.4	0.70	0.68	0.70	41.7
East: `	Yamba	a Rd (E)													
4	L2	All MCs	312	4.3	312	4.3	0.628	5.5	LOS A	6.1	44.0	0.63	0.53	0.63	46.5
5	T1	All MCs	467	3.1	467	3.1	0.628	5.7	LOS A	6.1	44.0	0.63	0.53	0.63	49.1
Appro	ach		779	3.6	779	3.6	0.628	5.6	LOS A	6.1	44.0	0.63	0.53	0.63	48.2
West:	Yamb	a Rd (W)													
11	T1	All MCs	511	1.4	511	1.4	0.539	5.3	LOS A	4.9	34.8	0.54	0.52	0.54	48.9
12	R2	All MCs	176	3.8	176	3.8	0.539	9.9	LOS A	4.9	34.8	0.54	0.52	0.54	41.3
Appro	ach		686	2.0	686	2.0	0.539	6.5	LOS A	4.9	34.8	0.54	0.52	0.54	47.5
All Vel	hicles		1761	3.2	1761	3.2	0.628	6.6	LOS A	6.1	44.0	0.61	0.55	0.61	46.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:38 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

W Site: 101 [2034 DES AM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perfor	man	ice										
Mov ID	Turn	Mov Class	Dema Flo [Total H veh/h	ows IV][Fl	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of Jeue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)												
1	L2	All MCs	200 1	0.8	200 1	10.8	0.730	14.3	LOS A	9.2	67.9	0.95	0.96	1.36	31.9
3	R2	All MCs	388	4.2	388	4.2	0.730	18.8	LOS B	9.2	67.9	0.95	0.96	1.36	37.1
Appro	ach		588	6.4	588	6.4	0.730	17.3	LOS B	9.2	67.9	0.95	0.96	1.36	35.6
East:	Yamba	a Rd (E)													
4	L2	All MCs	160	1.5	160	1.5	0.545	4.7	LOS A	5.5	39.6	0.51	0.45	0.51	47.2
5	T1	All MCs	564	4.3	564	4.3	0.545	5.0	LOS A	5.5	39.6	0.51	0.45	0.51	49.5
Appro	ach		724	3.7	724	3.7	0.545	4.9	LOS A	5.5	39.6	0.51	0.45	0.51	49.0
West:	Yamb	a Rd (W)													
11	T1	All MCs	604	4.8	604	4.8	0.766	11.7	LOS A	11.0	81.0	0.97	0.86	1.26	45.0
12	R2	All MCs	105 1	4.0	105 î	14.0	0.766	16.8	LOS B	11.0	81.0	0.97	0.86	1.26	36.3
Appro	ach		709	6.2	709	6.2	0.766	12.5	LOS A	11.0	81.0	0.97	0.86	1.26	44.0
All Ve	hicles		2022	5.4	2022	5.4	0.766	11.2	LOS A	11.0	81.0	0.80	0.74	1.02	43.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:38 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

W Site: 101 [2034 DES PM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	le Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Carrs	s Drive (S	5)												
1	L2	All MCs	154	8.2	154	8.2	0.406	7.9	LOS A	2.9	21.2	0.80	0.72	0.80	38.1
3	R2	All MCs	166	1.9	166	1.9	0.406	12.5	LOS A	2.9	21.2	0.80	0.72	0.80	42.8
Appro	ach		320	4.9	320	4.9	0.406	10.3	LOS A	2.9	21.2	0.80	0.72	0.80	40.8
East:	Yamba	a Rd (E)													
4	L2	All MCs	322	4.3	322	4.3	0.714	5.9	LOS A	8.2	59.1	0.73	0.56	0.74	45.8
5	T1	All MCs	558	3.1	558	3.1	0.714	6.1	LOS A	8.2	59.1	0.73	0.56	0.74	48.5
Appro	ach		880	3.5	880	3.5	0.714	6.0	LOS A	8.2	59.1	0.73	0.56	0.74	47.7
West:	Yamb	a Rd (W)													
11	T1	All MCs	611	1.4	611	1.4	0.631	5.5	LOS A	6.6	46.6	0.64	0.54	0.64	48.5
12	R2	All MCs	182	3.8	182	3.8	0.631	10.2	LOS A	6.6	46.6	0.64	0.54	0.64	40.7
Appro	ach		793	2.0	793	2.0	0.631	6.6	LOS A	6.6	46.6	0.64	0.54	0.64	47.2
All Ve	hicles		1993	3.1	1993	3.1	0.714	7.0	LOS A	8.2	59.1	0.71	0.58	0.71	46.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 1:36:39 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Carrs Drive Intersection.sip9

SITE LAYOUT V Site: 101 [2024 BG AM (Site Folder: General)]

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Created: Sunday, 3 September 2023 2:07:53 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

V Site: 101 [2024 BG AM (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehio	cle Me	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	518	4.1	518	4.1	0.400	4.3	LOS A	3.5	25.4	0.18	0.43	0.18	53.2
6	R2	All MCs	109	4.0	109	4.0	0.400	8.9	LOS A	3.5	25.4	0.18	0.43	0.18	52.2
Appro	bach		627	4.1	627	4.1	0.400	5.1	LOS A	3.5	25.4	0.18	0.43	0.18	53.0
North	: Shor	es Dr (N)													
7	L2	All MCs	217	1.5	217	1.5	0.328	8.9	LOS A	2.2	15.7	0.80	0.73	0.80	49.9
9	R2	All MCs	24	0.0	24	0.0	0.328	13.7	LOS A	2.2	15.7	0.80	0.73	0.80	48.4
Appro	bach		241	1.3	241	1.3	0.328	9.4	LOS A	2.2	15.7	0.80	0.73	0.80	49.8
West:	Yamb	a Rd (W)													
10	L2	All MCs	37	4.2	37	4.2	0.553	4.8	LOS A	4.7	34.1	0.43	0.44	0.43	51.3
11	T1	All MCs	714	4.7	714	4.7	0.553	5.0	LOS A	4.7	34.1	0.43	0.44	0.43	52.5
Appro	bach		751	4.7	751	4.7	0.553	5.0	LOS A	4.7	34.1	0.43	0.44	0.43	52.5
All Ve	hicles		1619	4.0	1619	4.0	0.553	5.7	LOS A	4.7	34.1	0.39	0.48	0.39	52.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:24 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

V Site: 101 [2024 BG PM (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	624	2.2	624	2.2	0.481	4.3	LOS A	4.6	32.6	0.18	0.44	0.18	53.1
6	R2	All MCs	149	2.2	149	2.2	0.481	8.9	LOS A	4.6	32.6	0.18	0.44	0.18	52.2
Appro	ach		774	2.2	774	2.2	0.481	5.1	LOS A	4.6	32.6	0.18	0.44	0.18	52.9
North	: Shor	es Dr (N)													
7	L2	All MCs	119	2.7	119	2.7	0.168	7.2	LOS A	1.0	7.2	0.67	0.66	0.67	51.0
9	R2	All MCs	22	0.0	22	0.0	0.168	11.9	LOS A	1.0	7.2	0.67	0.66	0.67	49.6
Appro	ach		141	2.3	141	2.3	0.168	7.9	LOS A	1.0	7.2	0.67	0.66	0.67	50.8
West:	Yamb	a Rd (W)													
10	L2	All MCs	36	3.4	36	3.4	0.467	5.0	LOS A	3.4	24.6	0.44	0.46	0.44	51.3
11	T1	All MCs	568	2.4	568	2.4	0.467	5.2	LOS A	3.4	24.6	0.44	0.46	0.44	52.5
Appro	ach		604	2.5	604	2.5	0.467	5.1	LOS A	3.4	24.6	0.44	0.46	0.44	52.4
All Ve	hicles		1519	2.3	1519	2.3	0.481	5.4	LOS A	4.6	32.6	0.33	0.47	0.33	52.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:25 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

V Site: 101 [2034 BG AM (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehio	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	609	4.1	609	4.1	0.475	4.3	LOS A	4.7	34.4	0.22	0.43	0.22	52.9
6	R2	All MCs	131	4.0	131	4.0	0.475	8.9	LOS A	4.7	34.4	0.22	0.43	0.22	52.0
Appro	ach		740	4.1	740	4.1	0.475	5.1	LOS A	4.7	34.4	0.22	0.43	0.22	52.8
North	: Shor	es Dr (N)													
7	L2	All MCs	259	1.5	259	1.5	0.452	11.5	LOS A	3.6	25.7	0.91	0.82	1.01	48.0
9	R2	All MCs	28	0.0	28	0.0	0.452	16.2	LOS B	3.6	25.7	0.91	0.82	1.01	46.4
Appro	ach		287	1.4	287	1.4	0.452	12.0	LOS A	3.6	25.7	0.91	0.82	1.01	47.9
West:	Yamb	a Rd (W)													
10	L2	All MCs	41	4.2	41	4.2	0.643	5.1	LOS A	6.3	45.6	0.53	0.47	0.53	50.8
11	T1	All MCs	813	4.7	813	4.7	0.643	5.4	LOS A	6.3	45.6	0.53	0.47	0.53	52.0
Appro	ach		854	4.7	854	4.7	0.643	5.4	LOS A	6.3	45.6	0.53	0.47	0.53	51.9
All Ve	hicles		1881	3.9	1881	3.9	0.643	6.3	LOS A	6.3	45.6	0.47	0.51	0.49	51.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:26 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

V Site: 101 [2034 BG PM (Site Folder: General)] Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	709	2.2	709	2.2	0.553	4.3	LOS A	6.1	43.2	0.22	0.43	0.22	52.9
6	R2	All MCs	179	2.2	179	2.2	0.553	8.9	LOS A	6.1	43.2	0.22	0.43	0.22	52.0
Appro	ach		888	2.2	888	2.2	0.553	5.2	LOS A	6.1	43.2	0.22	0.43	0.22	52.7
North:	Shor	es Dr (N)													
7	L2	All MCs	142	2.7	142	2.7	0.222	8.1	LOS A	1.4	10.2	0.75	0.70	0.75	50.3
9	R2	All MCs	24	0.0	24	0.0	0.222	12.8	LOS A	1.4	10.2	0.75	0.70	0.75	48.9
Appro	ach		166	2.3	166	2.3	0.222	8.8	LOS A	1.4	10.2	0.75	0.70	0.75	50.1
West:	Yamb	a Rd (W)													
10	L2	All MCs	42	3.4	42	3.4	0.563	5.4	LOS A	4.7	33.4	0.54	0.50	0.54	50.8
11	T1	All MCs	666	2.4	666	2.4	0.563	5.6	LOS A	4.7	33.4	0.54	0.50	0.54	52.0
Appro	ach		708	2.5	708	2.5	0.563	5.5	LOS A	4.7	33.4	0.54	0.50	0.54	52.0
All Ve	hicles		1763	2.3	1763	2.3	0.563	5.7	LOS A	6.1	43.2	0.40	0.48	0.40	52.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:27 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

W Site: 101 [2024 DES AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	528	4.1	528	4.1	0.407	4.3	LOS A	3.6	26.3	0.18	0.43	0.18	53.1
6	R2	All MCs	109	4.0	109	4.0	0.407	8.9	LOS A	3.6	26.3	0.18	0.43	0.18	52.1
Appro	bach		638	4.1	638	4.1	0.407	5.1	LOS A	3.6	26.3	0.18	0.43	0.18	53.0
North	: Shor	es Dr (N)													
7	L2	All MCs	217	1.5	217	1.5	0.346	9.4	LOS A	2.4	17.0	0.83	0.74	0.83	49.5
9	R2	All MCs	24	0.0	24	0.0	0.346	14.2	LOS A	2.4	17.0	0.83	0.74	0.83	48.0
Appro	bach		241	1.3	241	1.3	0.346	9.9	LOS A	2.4	17.0	0.83	0.74	0.83	49.4
West:	Yamb	a Rd (W)													
10	L2	All MCs	39	4.2	39	4.2	0.587	4.8	LOS A	5.2	38.2	0.45	0.45	0.45	51.2
11	T1	All MCs	760	4.7	760	4.7	0.587	5.1	LOS A	5.2	38.2	0.45	0.45	0.45	52.4
Appro	bach		799	4.7	799	4.7	0.587	5.1	LOS A	5.2	38.2	0.45	0.45	0.45	52.4
All Ve	hicles		1678	4.0	1678	4.0	0.587	5.8	LOS A	5.2	38.2	0.40	0.48	0.40	52.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:27 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

W Site: 101 [2024 DES PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehio	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	664	2.2	664	2.2	0.506	4.3	LOS A	5.0	35.8	0.19	0.43	0.19	53.1
6	R2	All MCs	149	2.2	149	2.2	0.506	8.9	LOS A	5.0	35.8	0.19	0.43	0.19	52.1
Appro	bach		814	2.2	814	2.2	0.506	5.1	LOS A	5.0	35.8	0.19	0.43	0.19	52.9
North	: Shor	es Dr (N)													
7	L2	All MCs	119	2.7	119	2.7	0.171	7.3	LOS A	1.0	7.4	0.68	0.67	0.68	50.9
9	R2	All MCs	23	0.0	23	0.0	0.171	12.0	LOS A	1.0	7.4	0.68	0.67	0.68	49.5
Appro	bach		142	2.3	142	2.3	0.171	8.1	LOS A	1.0	7.4	0.68	0.67	0.68	50.7
West:	Yamb	a Rd (W)													
10	L2	All MCs	36	3.4	36	3.4	0.477	5.0	LOS A	3.6	25.6	0.45	0.46	0.45	51.2
11	T1	All MCs	582	2.4	582	2.4	0.477	5.2	LOS A	3.6	25.6	0.45	0.46	0.45	52.5
Appro	bach		618	2.5	618	2.5	0.477	5.2	LOS A	3.6	25.6	0.45	0.46	0.45	52.4
All Ve	hicles		1574	2.3	1574	2.3	0.506	5.4	LOS A	5.0	35.8	0.34	0.47	0.34	52.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:28 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

W Site: 101 [2034 DES AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehio	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	621	4.1	621	4.1	0.482	4.3	LOS A	4.9	35.6	0.23	0.43	0.23	52.9
6	R2	All MCs	131	4.0	131	4.0	0.482	8.9	LOS A	4.9	35.6	0.23	0.43	0.23	51.9
Appro	bach		752	4.1	752	4.1	0.482	5.1	LOS A	4.9	35.6	0.23	0.43	0.23	52.8
North	: Shor	es Dr (N)													
7	L2	All MCs	259	1.5	259	1.5	0.484	13.0	LOS A	4.1	29.1	0.94	0.86	1.10	47.0
9	R2	All MCs	28	0.0	28	0.0	0.484	17.7	LOS B	4.1	29.1	0.94	0.86	1.10	45.4
Appro	bach		287	1.4	287	1.4	0.484	13.5	LOS A	4.1	29.1	0.94	0.86	1.10	46.9
West:	Yamb	a Rd (W)													
10	L2	All MCs	44	4.2	44	4.2	0.678	5.2	LOS A	7.1	51.3	0.57	0.48	0.57	50.6
11	T1	All MCs	859	4.7	859	4.7	0.678	5.5	LOS A	7.1	51.3	0.57	0.48	0.57	51.8
Appro	bach		903	4.7	903	4.7	0.678	5.5	LOS A	7.1	51.3	0.57	0.48	0.57	51.8
All Ve	hicles		1942	4.0	1942	4.0	0.678	6.5	LOS A	7.1	51.3	0.49	0.52	0.52	51.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:28 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

W Site: 101 [2034 DES PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehic	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	749	2.2	749	2.2	0.580	4.3	LOS A	6.7	47.6	0.24	0.43	0.24	52.9
6	R2	All MCs	179	2.2	179	2.2	0.580	8.9	LOS A	6.7	47.6	0.24	0.43	0.24	51.9
Appro	ach		928	2.2	928	2.2	0.580	5.2	LOS A	6.7	47.6	0.24	0.43	0.24	52.7
North	Shor	es Dr (N)													
7	L2	All MCs	142	2.7	142	2.7	0.228	8.2	LOS A	1.5	10.7	0.76	0.71	0.76	50.2
9	R2	All MCs	26	0.0	26	0.0	0.228	13.0	LOS A	1.5	10.7	0.76	0.71	0.76	48.7
Appro	ach		168	2.3	168	2.3	0.228	9.0	LOS A	1.5	10.7	0.76	0.71	0.76	50.0
West:	Yamb	a Rd (W)													
10	L2	All MCs	42	3.4	42	3.4	0.574	5.4	LOS A	4.9	34.8	0.55	0.50	0.55	50.7
11	T1	All MCs	681	2.4	681	2.4	0.574	5.6	LOS A	4.9	34.8	0.55	0.50	0.55	52.0
Appro	ach		723	2.5	723	2.5	0.574	5.6	LOS A	4.9	34.8	0.55	0.50	0.55	51.9
All Ve	hicles		1820	2.3	1820	2.3	0.580	5.7	LOS A	6.7	47.6	0.41	0.48	0.41	52.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:29 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

W Site: 101 [2024 DES AM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehi	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	575	4.1	575	4.1	0.445	4.3	LOS A	4.2	30.7	0.20	0.43	0.20	53.0
6	R2	All MCs	121	4.0	121	4.0	0.445	8.9	LOS A	4.2	30.7	0.20	0.43	0.20	52.0
Appro	bach		696	4.1	696	4.1	0.445	5.1	LOS A	4.2	30.7	0.20	0.43	0.20	52.9
North	: Shor	es Dr (N)													
7	L2	All MCs	241	1.5	241	1.5	0.405	10.3	LOS A	3.0	21.2	0.88	0.78	0.91	48.9
9	R2	All MCs	26	0.0	26	0.0	0.405	15.1	LOS B	3.0	21.2	0.88	0.78	0.91	47.3
Appro	bach		267	1.4	267	1.4	0.405	10.8	LOS A	3.0	21.2	0.88	0.78	0.91	48.7
West:	Yamb	a Rd (W)													
10	L2	All MCs	40	4.2	40	4.2	0.619	5.0	LOS A	5.8	42.4	0.50	0.46	0.50	51.0
11	T1	All MCs	792	4.7	792	4.7	0.619	5.2	LOS A	5.8	42.4	0.50	0.46	0.50	52.2
Appro	bach		832	4.7	832	4.7	0.619	5.2	LOS A	5.8	42.4	0.50	0.46	0.50	52.1
All Ve	hicles		1795	4.0	1795	4.0	0.619	6.0	LOS A	5.8	42.4	0.44	0.50	0.44	51.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:29 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

W Site: 101 [2024 DES PM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehio	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	693	2.2	693	2.2	0.535	4.3	LOS A	5.6	40.1	0.21	0.43	0.21	53.0
6	R2	All MCs	166	2.2	166	2.2	0.535	8.9	LOS A	5.6	40.1	0.21	0.43	0.21	52.0
Appro	bach		859	2.2	859	2.2	0.535	5.2	LOS A	5.6	40.1	0.21	0.43	0.21	52.8
North	: Shor	es Dr (N)													
7	L2	All MCs	133	2.7	133	2.7	0.200	7.7	LOS A	1.3	9.0	0.72	0.69	0.72	50.6
9	R2	All MCs	24	0.0	24	0.0	0.200	12.5	LOS A	1.3	9.0	0.72	0.69	0.72	49.2
Appro	bach		157	2.3	157	2.3	0.200	8.5	LOS A	1.3	9.0	0.72	0.69	0.72	50.4
West:	Yamb	a Rd (W)													
10	L2	All MCs	39	3.4	39	3.4	0.526	5.2	LOS A	4.2	29.8	0.50	0.48	0.50	51.0
11	T1	All MCs	631	2.4	631	2.4	0.526	5.4	LOS A	4.2	29.8	0.50	0.48	0.50	52.2
Appro	bach		669	2.5	669	2.5	0.526	5.4	LOS A	4.2	29.8	0.50	0.48	0.50	52.2
All Ve	hicles		1685	2.3	1685	2.3	0.535	5.6	LOS A	5.6	40.1	0.37	0.48	0.37	52.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:30 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

W Site: 101 [2034 DES AM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehio	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	677	4.1	677	4.1	0.530	4.4	LOS A	5.9	42.7	0.26	0.42	0.26	52.8
6	R2	All MCs	145	4.0	145	4.0	0.530	9.0	LOS A	5.9	42.7	0.26	0.42	0.26	51.8
Appro	bach		822	4.1	822	4.1	0.530	5.2	LOS A	5.9	42.7	0.26	0.42	0.26	52.6
North	: Shor	es Dr (N)													
7	L2	All MCs	287	1.5	287	1.5	0.589	16.9	LOS B	5.8	41.3	1.00	0.95	1.33	44.5
9	R2	All MCs	32	0.0	32	0.0	0.589	21.6	LOS B	5.8	41.3	1.00	0.95	1.33	42.8
Appro	bach		319	1.4	319	1.4	0.589	17.4	LOS B	5.8	41.3	1.00	0.95	1.33	44.4
West:	Yamb	a Rd (W)													
10	L2	All MCs	46	4.2	46	4.2	0.725	5.5	LOS A	8.2	59.4	0.65	0.51	0.65	50.2
11	T1	All MCs	902	4.7	902	4.7	0.725	5.8	LOS A	8.2	59.4	0.65	0.51	0.65	51.5
Appro	bach		948	4.7	948	4.7	0.725	5.8	LOS A	8.2	59.4	0.65	0.51	0.65	51.4
All Ve	hicles		2089	3.9	2089	3.9	0.725	7.3	LOS A	8.2	59.4	0.55	0.54	0.60	50.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:31 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

W Site: 101 [2034 DES PM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehio	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	787	2.2	787	2.2	0.617	4.3	LOS A	7.7	55.1	0.27	0.43	0.27	52.7
6	R2	All MCs	199	2.2	199	2.2	0.617	9.0	LOS A	7.7	55.1	0.27	0.43	0.27	51.8
Appro	bach		986	2.2	986	2.2	0.617	5.3	LOS A	7.7	55.1	0.27	0.43	0.27	52.5
North	: Shor	es Dr (N)													
7	L2	All MCs	158	2.7	158	2.7	0.275	8.9	LOS A	1.9	13.4	0.82	0.74	0.82	49.7
9	R2	All MCs	27	0.0	27	0.0	0.275	13.6	LOS A	1.9	13.4	0.82	0.74	0.82	48.2
Appro	bach		185	2.3	185	2.3	0.275	9.6	LOS A	1.9	13.4	0.82	0.74	0.82	49.5
West:	Yamb	a Rd (W)													
10	L2	All MCs	46	3.4	46	3.4	0.637	5.7	LOS A	5.8	41.8	0.63	0.53	0.63	50.3
11	T1	All MCs	740	2.4	740	2.4	0.637	5.9	LOS A	5.8	41.8	0.63	0.53	0.63	51.6
Appro	bach		786	2.5	786	2.5	0.637	5.9	LOS A	5.8	41.8	0.63	0.53	0.63	51.5
All Ve	hicles		1958	2.3	1958	2.3	0.637	5.9	LOS A	7.7	55.1	0.46	0.50	0.46	51.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:31 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

🐺 Site: 101 [2024 BG AM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehio	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	585	4.1	585	4.1	0.453	4.3	LOS A	4.4	31.8	0.21	0.43	0.21	53.0
6	R2	All MCs	121	4.0	121	4.0	0.453	8.9	LOS A	4.4	31.8	0.21	0.43	0.21	52.0
Appro	bach		706	4.1	706	4.1	0.453	5.1	LOS A	4.4	31.8	0.21	0.43	0.21	52.8
North	: Shor	es Dr (N)													
7	L2	All MCs	241	1.5	241	1.5	0.434	11.5	LOS A	3.4	24.1	0.91	0.81	0.99	48.0
9	R2	All MCs	27	0.0	27	0.0	0.434	16.3	LOS B	3.4	24.1	0.91	0.81	0.99	46.4
Appro	bach		268	1.3	268	1.3	0.434	12.0	LOS A	3.4	24.1	0.91	0.81	0.99	47.8
West:	Yamb	a Rd (W)													
10	L2	All MCs	43	4.2	43	4.2	0.654	5.1	LOS A	6.5	47.7	0.53	0.47	0.53	50.8
11	T1	All MCs	838	4.7	838	4.7	0.654	5.3	LOS A	6.5	47.7	0.53	0.47	0.53	52.0
Appro	bach		881	4.7	881	4.7	0.654	5.3	LOS A	6.5	47.7	0.53	0.47	0.53	52.0
All Ve	hicles		1856	4.0	1856	4.0	0.654	6.2	LOS A	6.5	47.7	0.46	0.50	0.47	51.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:32 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

W Site: 101 [2024 BG PM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehio	cle Mo	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	733	2.2	733	2.2	0.561	4.3	LOS A	6.2	44.0	0.22	0.43	0.22	53.0
6	R2	All MCs	166	2.2	166	2.2	0.561	8.9	LOS A	6.2	44.0	0.22	0.43	0.22	52.0
Appro	bach		899	2.2	899	2.2	0.561	5.2	LOS A	6.2	44.0	0.22	0.43	0.22	52.8
North	: Shor	es Dr (N)													
7	L2	All MCs	133	2.7	133	2.7	0.204	7.9	LOS A	1.3	9.2	0.73	0.69	0.73	50.5
9	R2	All MCs	25	0.0	25	0.0	0.204	12.6	LOS A	1.3	9.2	0.73	0.69	0.73	49.0
Appro	bach		158	2.3	158	2.3	0.204	8.6	LOS A	1.3	9.2	0.73	0.69	0.73	50.3
West:	Yamb	a Rd (W)													
10	L2	All MCs	40	3.4	40	3.4	0.537	5.2	LOS A	4.3	31.0	0.51	0.48	0.51	50.9
11	T1	All MCs	644	2.4	644	2.4	0.537	5.4	LOS A	4.3	31.0	0.51	0.48	0.51	52.2
Appro	bach		684	2.5	684	2.5	0.537	5.4	LOS A	4.3	31.0	0.51	0.48	0.51	52.1
All Ve	hicles		1741	2.3	1741	2.3	0.561	5.6	LOS A	6.2	44.0	0.38	0.47	0.38	52.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:32 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

🐺 Site: 101 [2034 BG AM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehio	cle Me	ovement	Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	688	4.1	688	4.1	0.537	4.4	LOS A	6.1	43.8	0.27	0.42	0.27	52.8
6	R2	All MCs	145	4.0	145	4.0	0.537	9.0	LOS A	6.1	43.8	0.27	0.42	0.27	51.8
Appro	bach		834	4.1	834	4.1	0.537	5.2	LOS A	6.1	43.8	0.27	0.42	0.27	52.6
North	: Shor	es Dr (N)													
7	L2	All MCs	287	2.7	287	2.7	0.633	19.8	LOS B	6.6	47.4	1.00	1.02	1.42	42.8
9	R2	All MCs	32	0.0	32	0.0	0.633	24.4	LOS B	6.6	47.4	1.00	1.02	1.42	41.1
Appro	bach		319	2.4	319	2.4	0.633	20.2	LOS B	6.6	47.4	1.00	1.02	1.42	42.7
West:	Yamb	a Rd (W)													
10	L2	All MCs	48	3.4	48	3.4	0.751	5.6	LOS A	8.9	63.8	0.68	0.52	0.68	50.1
11	T1	All MCs	948	2.4	948	2.4	0.751	5.8	LOS A	8.9	63.8	0.68	0.52	0.68	51.4
Appro	bach		997	2.4	997	2.4	0.751	5.8	LOS A	8.9	63.8	0.68	0.52	0.68	51.3
All Ve	hicles		2149	3.1	2149	3.1	0.751	7.7	LOS A	8.9	63.8	0.57	0.56	0.63	50.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:33 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

W Site: 101 [2034 BG PM - Seasonality (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Yamba Road / Carrs Drive Site Category: (None) Roundabout

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Yamba	a Rd (E)													
5	T1	All MCs	827	2.2	827	2.2	0.643	4.4	LOS A	8.5	60.6	0.29	0.43	0.29	52.7
6	R2	All MCs	199	2.2	199	2.2	0.643	9.0	LOS A	8.5	60.6	0.29	0.43	0.29	51.7
Appro	ach		1026	2.2	1026	2.2	0.643	5.3	LOS A	8.5	60.6	0.29	0.43	0.29	52.5
North	: Shor	es Dr (N)													
7	L2	All MCs	158	2.7	158	2.7	0.282	9.1	LOS A	1.9	13.9	0.83	0.74	0.83	49.6
9	R2	All MCs	28	0.0	28	0.0	0.282	13.8	LOS A	1.9	13.9	0.83	0.74	0.83	48.1
Appro	ach		186	2.3	186	2.3	0.282	9.8	LOS A	1.9	13.9	0.83	0.74	0.83	49.4
West:	Yamb	a Rd (W)													
10	L2	All MCs	47	3.4	47	3.4	0.649	5.7	LOS A	6.1	43.5	0.64	0.53	0.64	50.3
11	T1	All MCs	754	2.4	754	2.4	0.649	5.9	LOS A	6.1	43.5	0.64	0.53	0.64	51.6
Appro	ach		801	2.5	801	2.5	0.649	5.9	LOS A	6.1	43.5	0.64	0.53	0.64	51.5
All Ve	hicles		2014	2.3	2014	2.3	0.649	5.9	LOS A	8.5	60.6	0.48	0.50	0.48	51.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:07:34 PM Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.002M Yamba Road & Shores Drive Intersection.sip9

SITE LAYOUT V Site: 101 [2034 DES AM (Site Folder: General)]

Carrs Drive / Miles Street Site Category: (None) Give-Way (Two-Way)

Layout pictures are schematic functional drawings reflecting input data. They are not design drawings.

V Site: 101 [2034 DES AM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Carrs Drive / Miles Street Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South: Carrs Drive (S)															
2	T1	All MCs	144	2.0	144	2.0	0.076	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	59.9
3	R2	All MCs	1	2.0	1	2.0	0.076	5.5	LOS A	0.0	0.0	0.00	0.00	0.00	57.0
Appro	ach		145	2.0	145	2.0	0.076	0.0	NA	0.0	0.0	0.00	0.00	0.00	59.9
East: Miles St (E)															
4	L2	All MCs	1	2.0	1	2.0	0.132	5.7	LOS A	0.5	3.2	0.28	0.61	0.28	52.1
6	R2	All MCs	140	2.0	140	2.0	0.132	6.3	LOS A	0.5	3.2	0.28	0.61	0.28	51.8
Appro	ach		141	2.0	141	2.0	0.132	6.3	LOS A	0.5	3.2	0.28	0.61	0.28	51.8
North:	Carrs	Drive (N)												
7	L2	All MCs	36	2.0	36	2.0	0.039	5.6	LOS A	0.0	0.0	0.00	0.29	0.00	55.0
8	T1	All MCs	37	2.0	37	2.0	0.039	0.0	LOS A	0.0	0.0	0.00	0.29	0.00	57.4
Appro	ach		73	2.0	73	2.0	0.039	2.8	NA	0.0	0.0	0.00	0.29	0.00	56.2
All Ve	hicles		359	2.0	359	2.0	0.132	3.0	NA	0.5	3.2	0.11	0.30	0.11	55.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:15:35 PM

Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.001M Carrs Drive & Miles Street Intersection.sip9

V Site: 101 [2034 DES PM (Site Folder: General)]

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Carrs Drive / Miles Street Site Category: (None) Give-Way (Two-Way)

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South: Carrs Drive (S)															
2	T1	All MCs	56	2.0	56	2.0	0.030	0.0	LOS A	0.0	0.1	0.02	0.02	0.02	59.8
3	R2	All MCs	1	2.0	1	2.0	0.030	6.5	LOS A	0.0	0.1	0.02	0.02	0.02	56.9
Appro	ach		57	2.0	57	2.0	0.030	0.1	NA	0.0	0.1	0.02	0.02	0.02	59.8
East:	Miles	St (E)													
4	L2	All MCs	1	2.0	1	2.0	0.058	6.0	LOS A	0.2	1.3	0.30	0.61	0.30	52.0
6	R2	All MCs	58	2.0	58	2.0	0.058	6.4	LOS A	0.2	1.3	0.30	0.61	0.30	51.8
Appro	ach		59	2.0	59	2.0	0.058	6.4	LOS A	0.2	1.3	0.30	0.61	0.30	51.8
North: Carrs Drive (N)															
7	L2	All MCs	135	2.0	135	2.0	0.139	5.6	LOS A	0.0	0.0	0.00	0.30	0.00	54.9
8	T1	All MCs	126	2.0	126	2.0	0.139	0.0	LOS A	0.0	0.0	0.00	0.30	0.00	57.2
Appro	ach		261	2.0	261	2.0	0.139	2.9	NA	0.0	0.0	0.00	0.30	0.00	56.0
All Ve	hicles		377	2.0	377	2.0	0.139	3.0	NA	0.2	1.3	0.05	0.31	0.05	55.8

Site Level of Service (LOS) Method: Delay (SIDRA). Site LOS Method is specified in the Parameter Settings dialog (Options tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: BITZIOS CONSULTING | Licence: PLUS / FLOATING | Processed: Sunday, 3 September 2023 2:15:36 PM

Project: P:\P5271 120 Carrs Drive Yamba TIA\Tech Work\Models\Iteration 3 IR\P5271.001M Carrs Drive & Miles Street Intersection.sip9

Appendix E: Swept Path Assessment

5.50

1.50

1.50

